Rchr
J-GLOBAL ID:201801009496926345   Update date: Apr. 10, 2024

Yoshikawa Yuki

ヨシカワ ユウキ | Yoshikawa Yuki
Affiliation and department:
Job title: Assistant Professor
Research field  (3): Molecular biology ,  Cell biology ,  Applied biochemistry
Research keywords  (9): 育種 ,  野生酵母 ,  yeast ,  stress response ,  アセトアルデヒド ,  Pentose Phosphate pathway ,  cell death ,  イソブタノール ,  Nitric Oxide
Research theme for competitive and other funds  (5):
  • 2024 - 2027 The effect of osmotic pressure in the medium on the high temperature tolerance of yeast cells
  • 2024 - 2026 Mechanism of osmotic pressure-induced enhancement of high temperature tolerance in the yeast Saccharomyces cerevisiae.
  • 2024 - 2025 Development of Akita's original rice-flour bread through selection of wild yeast with high bread-making potential
  • 2019 - 2022 Understanding novel reguratoly mechanism of nitric oxide synthesis and that phisiological role common in eukaryotic organisms
  • 2017 - 2019 Elucidation of the regulatory mechanism and physiological role of a novel nitric oxide synthesis found in yeast.
Papers (10):
  • Yuki Yoshikawa, Ryo Nasuno, Naoki Takaya, Hiroshi Takagi. Metallothionein Cup1 attenuates nitrosative stress in the yeast Saccharomyces cerevisiae. microbial cell. 2023. 10. 8. 170-177
  • Ryo Nasuno, Yuki Yoshikawa, Hiroshi Takagi. Acetaldehyde reacts with a fluorescent nitric oxide probe harboring an o-phenylenediamine structure that interferes with fluorometry. Free Radical Biology and Medicine. 2022. 187. 29-37
  • Akira Nishimura, Yuki Yoshikawa, Kazuki Ichikawa, Tetsuma Takemoto, Ryoya Tanahashi, Hiroshi Takagi. Longevity Regulation by Proline Oxidation in Yeast. Microorganisms. 2021. 9. 8. 1650-1650
  • Ryo Nasuno, Natsuko Yoshioka, Yuki Yoshikawa, Hiroshi Takagi. Cysteine residues in the fourth zinc finger are important for activation of the nitric oxide-inducible transcription factor Fzf1 in the yeast Saccharomyces cerevisiae. Genes to Cells. 2021. 26. 10. 823-829
  • Yuki Yoshikawa, Ryo Nasuno, Hiroshi Takagi. An NADPH-independent mechanism enhances oxidative and nitrosative stress tolerance in yeast cells lacking glucose-6-phosphate dehydrogenase activity. Yeast. 2021. 38. 7. 414-423
more...
MISC (4):
Lectures and oral presentations  (36):
  • Analysis of osmotic stress in the yeast Saccharomyces cerevisiae depending on incubation temperature.
    (2024)
  • Extracellular factors that improve high temperature tolerance in yeast
    (Yeast genetics and Molecular Biology News JAPAN No.56 2023)
  • Proposal for an efficient breeding method using the acquisition of high temperature stress tolerant strains as a model
    (2023)
  • 酵母 Saccharomyces cerevisiae における新規な一酸化 窒素耐性機構の解析
    (日本農芸化学会2022年度大会 2022)
  • 酵母におけるペントースリン酸回路とイソブタノール耐性との関連性.
    (第67回日本生化学会近畿支部例会 2021)
more...
Education (2):
  • 2012 - 2017 Nara Institute of Science and Technology Dividion of Biological Science Dividion of Biological Science
  • 2009 - 2012 Kindai-University agricultural department Dividion of Biological Science
Professional career (1):
  • 博士(バイオサイエンス) (奈良先端科学技術大学院大学)
Work history (2):
  • 2022/04 - 現在 Akita Prefectural University Department of Biotechnology Research Associate
  • 2017/04 - 2022/03 Nara Institute of Science and Technology Dividion of Biological Science Ph.D.
Committee career (1):
  • 2020/09 - 現在 酵母研究若手の会 運営委員
Awards (1):
  • 2016/04 - 14th International Congress on Yeasts ''Carl Singer Foundation award'' Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast
Association Membership(s) (6):
日本醸造学会 ,  THE JAPANESE BIOCHEMICAL SOCIETY ,  JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY ,  Yeast Genetics Society of Japan ,  NO Society of Japan ,  酵母研究会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page