文献
J-GLOBAL ID:201702230663809457
整理番号:17A0886607
SkeletonNet:三次元行動認識のためのマイニング深部その特徴【Powered by NICT】
SkeletonNet: Mining Deep Part Features for 3-D Action Recognition
著者 (5件):
Ke Qiuhong
(School of Computer Science and Software Engineering, The University of Western Australia, Crawley, WA, Australia)
,
An Senjian
(School of Computer Science and Software Engineering, The University of Western Australia, Crawley, WA, Australia)
,
Bennamoun Mohammed
(School of Computer Science and Software Engineering, The University of Western Australia, Crawley, WA, Australia)
,
Sohel Ferdous
(School of Engineering and Information Technology, Murdoch University, Murdoch, WA, Australia)
,
Boussaid Farid
(School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, WA, Australia)
資料名:
IEEE Signal Processing Letters
(IEEE Signal Processing Letters)
巻:
24
号:
6
ページ:
731-735
発行年:
2017年
JST資料番号:
W0576A
ISSN:
1070-9908
CODEN:
ISPLEM
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
アメリカ合衆国 (USA)
言語:
英語 (EN)