文献
J-GLOBAL ID:201702283491661699
整理番号:17A1062484
空間的に明示的な機械学習アルゴリズムを用いた中国全土の日常連続PM_2 5濃度の時空間予測【Powered by NICT】
Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm
著者 (8件):
Zhan Yu
(Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China)
,
Luo Yuzhou
(Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA)
,
Deng Xunfei
(Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China)
,
Chen Huajin
(Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA)
,
Grieneisen Michael L.
(Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA)
,
Shen Xueyou
(Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China)
,
Zhu Lizhong
(Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China)
,
Zhang Minghua
(Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA)
資料名:
Atmospheric Environment
(Atmospheric Environment)
巻:
155
ページ:
129-139
発行年:
2017年
JST資料番号:
C0382D
ISSN:
1352-2310
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
イギリス (GBR)
言語:
英語 (EN)