文献
J-GLOBAL ID:201802213828757502
整理番号:18A0797363
アンサンブル学習に基づく住宅電力消費予測のための新しいデータ駆動アプローチ【JST・京大機械翻訳】
A novel data-driven approach for residential electricity consumption prediction based on ensemble learning
著者 (7件):
Chen Kunlong
(National Active Distribution Network Technology Research Center (NANTEC), Beijing Jiaotong University, Beijing, 100044, China)
,
Chen Kunlong
(Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing, 100044, China)
,
Jiang Jiuchun
(National Active Distribution Network Technology Research Center (NANTEC), Beijing Jiaotong University, Beijing, 100044, China)
,
Jiang Jiuchun
(Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing, 100044, China)
,
Zheng Fangdan
(National Active Distribution Network Technology Research Center (NANTEC), Beijing Jiaotong University, Beijing, 100044, China)
,
Zheng Fangdan
(Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing, 100044, China)
,
Chen Kunjin
(State Key Lab of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China)
資料名:
Energy
(Energy)
巻:
150
ページ:
49-60
発行年:
2018年
JST資料番号:
H0631A
ISSN:
0360-5442
CODEN:
ENEYDS
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
イギリス (GBR)
言語:
英語 (EN)