文献
J-GLOBAL ID:201802230637501488
整理番号:18A1894940
乾式切削のための物理誘導赤外線画像特徴と人工神経回路網に基づくオンライン工具温度モニタリング法【JST・京大機械翻訳】
An Online Tool Temperature Monitoring Method Based on Physics-Guided Infrared Image Features and Artificial Neural Network for Dry Cutting
著者 (4件):
Lee Kok-Meng
(State Key Laboratory of Digital Manufacturing and Equipment Technology, and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China)
,
Huang Yang
(State Key Laboratory of Digital Manufacturing and Equipment Technology, and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China)
,
Ji Jingjing
(State Key Laboratory of Digital Manufacturing and Equipment Technology, and School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China)
,
Lin Chun-Yeon
(George W. Woodruff School of Mechanical Engneering, Georgia Institute of Technology, Atlanta, GA, USA)
資料名:
IEEE Transactions on Automation Science and Engineering
(IEEE Transactions on Automation Science and Engineering)
巻:
15
号:
4
ページ:
1665-1676
発行年:
2018年
JST資料番号:
W1406A
ISSN:
1545-5955
CODEN:
ITASC7
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
アメリカ合衆国 (USA)
言語:
英語 (EN)