文献
J-GLOBAL ID:201802258077038155
整理番号:18A0142635
制限固定化学量論によらない化合物のSeebeck係数の予測:機械学習アプローチ【Powered by NICT】
Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach
著者 (6件):
Furmanchuk Al’ona
(Institute for Public Health and Medicine, Feinberg School of Medicine, Center for Health Information Partnerships, Northwestern University, Chicago, Illinois 60611)
,
Saal James E.
(QuesTeck Innovations LLC, Evanston, Illinois 60201)
,
Doak Jeff W.
(QuesTeck Innovations LLC, Evanston, Illinois 60201)
,
Olson Gregory B.
(QuesTeck Innovations LLC, Evanston, Illinois 60201)
,
Choudhary Alok
(Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208)
,
Agrawal Ankit
(Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208)
資料名:
Journal of Computational Chemistry
(Journal of Computational Chemistry)
巻:
39
号:
4
ページ:
191-202
発行年:
2018年
JST資料番号:
C0111B
ISSN:
0192-8651
CODEN:
JCCHDD
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
アメリカ合衆国 (USA)
言語:
英語 (EN)