文献
J-GLOBAL ID:201902251063382063
整理番号:19A2041275
前立腺特異抗原密度および前立腺特異抗原速度と比較して前立腺癌をより効率的に予測できる機械学習法【JST・京大機械翻訳】
Machine learning methods can more efficiently predict prostate cancer compared with prostate-specific antigen density and prostate-specific antigen velocity
著者 (9件):
Nitta Satoshi
(The Department of Urology, Hitachi General Hospital, Hitachi City, Japan)
,
Tsutsumi Masakazu
(The Department of Urology, Hitachi General Hospital, Hitachi City, Japan)
,
Sakka Shotaro
(The Department of Urology, Hitachi General Hospital, Hitachi City, Japan)
,
Endo Tsuyoshi
(The Department of Urology, Hitachi General Hospital, Hitachi City, Japan)
,
Hashimoto Kenichiro
(The Department of Information Systems, Hitachi General Hospital, Hitachi City, Japan)
,
Hasegawa Morikuni
(Information and Communication Technology Business Division, Hitachi Ltd., Chiyoda City, Japan)
,
Hayashi Takayuki
(Information and Communication Technology Business Division, Hitachi Ltd., Chiyoda City, Japan)
,
Kawai Koji
(The Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan)
,
Nishiyama Hiroyuki
(The Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan)
資料名:
Prostate International
(Prostate International)
巻:
7
号:
3
ページ:
114-118
発行年:
2019年
JST資料番号:
W3031A
ISSN:
2287-8882
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
オランダ (NLD)
言語:
英語 (EN)