文献
J-GLOBAL ID:202002218322777242
整理番号:20A2277475
畳込みニューラルネットワークに基づく時系列のための新しい類似性測定とクラスタリングフレームワーク【JST・京大機械翻訳】
A Novel Similarity Measurement and Clustering Framework for Time Series Based on Convolution Neural Networks
著者 (6件):
Ding Xin
(Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, College of Information Sciences and Technology, Donghua University, Shanghai, China)
,
Hao Kuangrong
(Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, College of Information Sciences and Technology, Donghua University, Shanghai, China)
,
Cai Xin
(Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, College of Information Sciences and Technology, Donghua University, Shanghai, China)
,
Tang Xue-Song
(Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, College of Information Sciences and Technology, Donghua University, Shanghai, China)
,
Chen Lei
(Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, College of Information Sciences and Technology, Donghua University, Shanghai, China)
,
Zhang Haichao
(Engineering Research Center of Digitized Textile and Apparel Technology, Ministry of Education, College of Information Sciences and Technology, Donghua University, Shanghai, China)
資料名:
IEEE Access
(IEEE Access)
巻:
8
ページ:
173158-173168
発行年:
2020年
JST資料番号:
W2422A
ISSN:
2169-3536
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
アメリカ合衆国 (USA)
言語:
英語 (EN)