文献
J-GLOBAL ID:202002226508152118
整理番号:20A1072676
産業用iotにおける異常検出のためのBayesおよびGauss処理によるLSTM学習【JST・京大機械翻訳】
LSTM Learning With Bayesian and Gaussian Processing for Anomaly Detection in Industrial IoT
著者 (6件):
Wu Di
(ExponentiAI Innovation Laboratory and the Key Laboratory for Embedded and Network Computing of Hunan Province, Hunan University, Changsha, China)
,
Jiang Zhongkai
(Key Laboratory for Embedded and Network Computing of Hunan Province and the Department of Computer Engineering, Hunan University, Changsha, China)
,
Xie Xiaofeng
(Key Laboratory for Embedded and Network Computing of Hunan Province and the Department of Computer Engineering, Hunan University, Changsha, China)
,
Wei Xuetao
(Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China)
,
Yu Weiren
(Department of Computer Science, University of Warwick, Coventry, U.K.)
,
Li Renfa
(Key Laboratory for Embedded and Network Computing of Hunan Province and the Department of Computer Engineering, Hunan University, Changsha, China)
資料名:
IEEE Transactions on Industrial Informatics
(IEEE Transactions on Industrial Informatics)
巻:
16
号:
8
ページ:
5244-5253
発行年:
2020年
JST資料番号:
W1434A
ISSN:
1551-3203
CODEN:
ITIICH
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
アメリカ合衆国 (USA)
言語:
英語 (EN)