文献
J-GLOBAL ID:202002271761568213
整理番号:20A2284513
多重ニューラルネットワークにおける最適自己誘導確率共鳴:電気的対化学的シナプス【JST・京大機械翻訳】
Optimal Self-Induced Stochastic Resonance in Multiplex Neural Networks: Electrical vs. Chemical Synapses
著者 (6件):
Yamakou Marius E.
(Max-Planck-Institut fuer Mathematik in den Naturwissenschaften, Leipzig, Germany)
,
Yamakou Marius E.
(Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark)
,
Hjorth Poul G.
(Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark)
,
Martens Erik A.
(Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark)
,
Martens Erik A.
(Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark)
,
Martens Erik A.
(Centre for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark)
資料名:
Frontiers in Computational Neuroscience (Web)
(Frontiers in Computational Neuroscience (Web))
巻:
14
ページ:
62
発行年:
2020年
JST資料番号:
U7036A
ISSN:
1662-5188
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
スイス (CHE)
言語:
英語 (EN)