文献
J-GLOBAL ID:202202213454799097
整理番号:22A1038237
人工ニューラルネットワーク,Gray-Wolf,およびガ-フラム最適化手法を用いた持続可能な路床のための廃棄物ベース活性化灰処理黒綿土の乾燥特性(CW,LS,およびVS)の計算モデリング【JST・京大機械翻訳】
Computational Modeling of Desiccation Properties (CW, LS, and VS) of Waste-Based Activated Ash-Treated Black Cotton Soil for Sustainable Subgrade Using Artificial Neural Network, Gray-Wolf, and Moth-Flame Optimization Techniques
著者 (5件):
Onyelowe Kennedy C.
(Department of Mechanical and Civil Engineering, Kampala International University, Kampala, Uganda)
,
Shakeri Jamshid
(Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran)
,
Amini-Khoshalan Hasel
(Department of Mining Engineering, University of Kurdistan, Sanandaj, Iran)
,
Usungedo Thompson F.
(Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria)
,
Alimoradi-Jazi Mohammadreza
(Department of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran)
資料名:
Advances in Materials Science and Engineering (Web)
(Advances in Materials Science and Engineering (Web))
巻:
2022
ページ:
Null
発行年:
2022年
JST資料番号:
U7020A
ISSN:
1687-8434
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
イギリス (GBR)
言語:
英語 (EN)