文献
J-GLOBAL ID:202202217382640130
整理番号:22A1117724
深層学習による高エネルギー消費産業負荷の分解のためのロバストアプローチ【JST・京大機械翻訳】
A robust approach for the decomposition of high-energy-consuming industrial loads with deep learning
著者 (7件):
Cui Jia
(The School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning Province, China)
,
Jin Yonghui
(The School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning Province, China)
,
Yu Renzhe
(Ulanqab Electric Power Bureau, Ulanqabn, 012000, Ulanqab, China)
,
Okoye Martin Onyeka
(The School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning Province, China)
,
Li Yang
(School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China)
,
Yang Junyou
(The School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning Province, China)
,
Wang Shunjiang
(State Grid Liaoning Electric Power Supply Co, Ltd., Shenyang, 110006, Liaoning Province, China)
資料名:
Journal of Cleaner Production
(Journal of Cleaner Production)
巻:
349
ページ:
Null
発行年:
2022年
JST資料番号:
W0750A
ISSN:
0959-6526
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
イギリス (GBR)
言語:
英語 (EN)