文献
J-GLOBAL ID:202202232554960675
整理番号:22A0451168
機械学習モデルによる極値勾配ブースティング特徴選択アプローチの統合:天候相対湿度予測の適用【JST・京大機械翻訳】
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
著者 (6件):
Tao Hai
(Computer Science Department, Baoji University of Arts and Sciences, Shaanxi, China)
,
Awadh Salih Muhammad
(Department of Geology, College of Science, University of Baghdad, Baghdad, Iraq)
,
Salih Sinan Q.
(Computer Science Department, Dijlah University College, Baghdad, Iraq)
,
Shafik Shafik S.
(Experimental Nuclear Radiation Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq)
,
Yaseen Zaher Mundher
(New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq)
,
Yaseen Zaher Mundher
(College of Creative Design, Asia University, Taichung City, Taiwan)
資料名:
Neural Computing & Applications
(Neural Computing & Applications)
巻:
34
号:
1
ページ:
515-533
発行年:
2022年
JST資料番号:
W0703A
ISSN:
0941-0643
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
ドイツ (DEU)
言語:
英語 (EN)