文献
J-GLOBAL ID:202202232669621663
整理番号:22A0848635
リモートセンシング画像における弱教師付きオブジェクト検出への提案の完全性と困難性の統合【JST・京大機械翻訳】
Incorporating the Completeness and Difficulty of Proposals Into Weakly Supervised Object Detection in Remote Sensing Images
著者 (7件):
Qian Xiaoliang
(College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China)
,
Huo Yu
(College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China)
,
Cheng Gong
(School of Automation, NorthWestern Polytechnical University, Xi’an, China)
,
Yao Xiwen
(School of Automation, NorthWestern Polytechnical University, Xi’an, China)
,
Li Ke
(Zhengzhou Institute of Surveying and Mapping, Zhengzhou, China)
,
Ren Hangli
(College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China)
,
Wang Wei
(College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China)
資料名:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
(IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing)
巻:
15
ページ:
1902-1911
発行年:
2022年
JST資料番号:
W2259A
ISSN:
1939-1404
CODEN:
IJSTHZ
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
アメリカ合衆国 (USA)
言語:
英語 (EN)