文献
J-GLOBAL ID:202202234567027247
整理番号:22A0394357
メッセージ通過ニューラルネットワークのアンサンブルを用いた分子特性予測のためのキャリブレーション不確実性【JST・京大機械翻訳】
Calibrated uncertainty for molecular property prediction using ensembles of message passing neural networks
著者 (8件):
Busk Jonas
(Department for Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark)
,
Bjorn Jorgensen Peter
(Department for Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark)
,
Bhowmik Arghya
(Department for Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark)
,
Schmidt Mikkel N
(Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark)
,
Winther Ole
(Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark)
,
Winther Ole
(Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark)
,
Winther Ole
(Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark)
,
Vegge Tejs
(Department for Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark)
資料名:
Machine Learning: Science and Technology
(Machine Learning: Science and Technology)
巻:
3
号:
1
ページ:
015012 (12pp)
発行年:
2022年
JST資料番号:
W6456A
ISSN:
2632-2153
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
イギリス (GBR)
言語:
英語 (EN)