文献
J-GLOBAL ID:202202241878528154
整理番号:22A0106010
マルチセンサのための双方向長期記憶と重み付き多数決投票を有するマルチスケール畳込みニューラルネットワークを用いた風力タービン軸受の故障診断【JST・京大機械翻訳】
Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors
著者 (8件):
Xu Zifei
(School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China)
,
Xu Zifei
(Department of Maritime and Mechanical Engineering, Liverpool John Moores University, Liverpool, Byrom Street, L3 3AF, UK)
,
Mei Xuan
(Department of Civil Engineering, Tongji University, Shanghai, 200092, PR China)
,
Wang Xinyu
(School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China)
,
Yue Minnan
(School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China)
,
Jin Jiangtao
(School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China)
,
Yang Yang
(Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, PR China)
,
Li Chun
(School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China)
資料名:
Renewable Energy
(Renewable Energy)
巻:
182
ページ:
615-626
発行年:
2022年
JST資料番号:
A0124C
ISSN:
0960-1481
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
イギリス (GBR)
言語:
英語 (EN)