文献
J-GLOBAL ID:202202244160352654
整理番号:22A0315914
自律機械学習モデルに基づく旋盤の切削工具摩耗の分類【JST・京大機械翻訳】
Classification of Lathe’s Cutting Tool Wear Based on an Autonomous Machine Learning Model
著者 (7件):
Fernandes Thiago E.
(Department of Industrial and Mechanical Engineering, Federal University de Juiz de Fora, Juiz de Fora, MG, Brazil)
,
Ferreira Matheus A. M.
(Department of Industrial and Mechanical Engineering, Federal University de Juiz de Fora, Juiz de Fora, MG, Brazil)
,
Miranda Guilherme P. C. de
(Department of Industrial and Mechanical Engineering, Federal University de Juiz de Fora, Juiz de Fora, MG, Brazil)
,
Dutra Alexandre F.
(Department of Industrial and Mechanical Engineering, Federal University de Juiz de Fora, Juiz de Fora, MG, Brazil)
,
Antunes Matheus P.
(Department of Industrial and Mechanical Engineering, Federal University de Juiz de Fora, Juiz de Fora, MG, Brazil)
,
Silva Marcos V. G. R. da
(Department of Industrial and Mechanical Engineering, Federal University de Juiz de Fora, Juiz de Fora, MG, Brazil)
,
Aguiar Eduardo P. de
(Department of Industrial and Mechanical Engineering, Federal University de Juiz de Fora, Juiz de Fora, MG, Brazil)
資料名:
Journal of Control, Automation and Electrical Systems
(Journal of Control, Automation and Electrical Systems)
巻:
33
号:
1
ページ:
167-182
発行年:
2022年
JST資料番号:
W4559A
ISSN:
2195-3880
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
ドイツ (DEU)
言語:
英語 (EN)