文献
J-GLOBAL ID:202202278952100480
整理番号:22A0389155
Ag-Auナノ合金の一般化可能な機械学習ポテンシャルと表面再構成,偏析および拡散への応用【JST・京大機械翻訳】
A generalizable machine learning potential of Ag-Au nanoalloys and its application to surface reconstruction, segregation and diffusion
著者 (5件):
Wang YiNan
(School of Mathematical Sciences, Peking University, No.5 Yiheyuan Road Haidian District, Beijing 100871, People’s Republic of China)
,
Zhang LinFeng
(Beijing Institute of Big Data Research, Beijing 100871, People’s Republic of China)
,
Xu Ben
(Graduate School, China Academy of Engineering Physics, Building 9, Beijing 100193, People’s Republic of China)
,
Wang XiaoYang
(Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Huayuan Road 6, Beijing 100088, People’s Republic of China)
,
Wang Han
(Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Huayuan Road 6, Beijing 100088, People’s Republic of China)
資料名:
Modelling and Simulation in Materials Science and Engineering
(Modelling and Simulation in Materials Science and Engineering)
巻:
30
号:
2
ページ:
025003 (26pp)
発行年:
2022年
JST資料番号:
W0484A
ISSN:
0965-0393
CODEN:
MSMEEU
資料種別:
逐次刊行物 (A)
記事区分:
原著論文
発行国:
イギリス (GBR)
言語:
英語 (EN)