文献
J-GLOBAL ID:202002231776023601   整理番号:20A1701915

クラスタアンサンブルを利用したGNMFに基づくクラスタリングの性能評価

Performance Evaluation of GNMF-based Clustering Using Cluster Ensembles
著者 (3件):
資料名:
巻: 34th  ページ: ROMBUNNO.4J2-GS-2-02 (WEB ONLY)  発行年: 2020年 
JST資料番号: U1701A  ISSN: 2758-7347  資料種別: 会議録 (C)
記事区分: 原著論文  発行国: 日本 (JPN)  言語: 日本語 (JA)
抄録/ポイント:
抄録/ポイント
文献の概要を数百字程度の日本語でまとめたものです。
部分表示の続きは、JDreamⅢ(有料)でご覧頂けます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。
近年,大規模高次元データに対するクラスタリング手法として,グラフ正則化非負値行列因子分解(GNMF:Graph Regularized Nonnegative Matrix Factorization)に基づくクラスタリングが注目されている.GNMFは多様体学習のアイデアをNMFに適用したものであり,実世界のデータに適した次元削減が可能である.しかし,GNMFの目的関数値とクラスタリング性能の間には隔たりが存在し,それ故に目的関数の最小化によって必ずしも高性能なクラスタリング結果が得られるとは限らない.さらに,多くの論文で詳細には考察されていないが,クラスタリング結果が初期値に依存する問題もある.本稿では,これらの問題を解決するための方法として,クラスタアンサンブルを利用したGNMFに基づくクラスタリング手法を提案する.また,提案手法によって高性能なクラスタリング結果が安定的に得られることを実験的に示す.(著者抄録)
シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

準シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

分類 (1件):
分類
JSTが定めた文献の分類名称とコードです
計算理論 
タイトルに関連する用語 (3件):
タイトルに関連する用語
J-GLOBALで独自に切り出した文献タイトルの用語をもとにしたキーワードです

前のページに戻る