文献
J-GLOBAL ID:202202273707364119   整理番号:22A2080276

スパイキングニューラルネットワークとreward-modulated STDPによるリザバーコンピューティング

Reservoir computing with spiking neural networks and reward-modulated STDP
著者 (3件):
資料名:
巻: 122  号: 65(NLP2022 1-25)  ページ: 31-35 (WEB ONLY)  発行年: 2022年06月02日 
JST資料番号: U2030A  ISSN: 2432-6380  資料種別: 会議録 (C)
記事区分: 原著論文  発行国: 日本 (JPN)  言語: 日本語 (JA)
抄録/ポイント:
抄録/ポイント
文献の概要を数百字程度の日本語でまとめたものです。
部分表示の続きは、JDreamⅢ(有料)でご覧頂けます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。
先行研究にて,リザバーコンピューティングの代表的なモデルであるecho state network(ESN)の学習則としてreward-modulated Hebbian learning(RMHL)を用いて,非線形性やワーキングメモリを必要とするタスクが遂行できることが確かめられている.また,ESNより生物学的妥当性の高い,スパイキングニューラルネットワーク(SNN)を用いたリザバーコンピューティングの代表的なモデルであるliquid state machine(LSM)を,強化学習に使った研究はあるが,RMHLに類似したSNNの学習則であるreward-modulated STDP(RM-STDP)が学習則として用いられたことはなかった.本発表では,リザバーにSNNを用い,RM-STDPによって学習するリザバーコンピューティングを,線形分離不可能なXOR問題に適用した実験について発表する.(著者抄録)
シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

準シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

分類 (1件):
分類
JSTが定めた文献の分類名称とコードです
人工知能 
物質索引 (1件):
物質索引
文献のテーマを表す化学物質のキーワードです
引用文献 (20件):
タイトルに関連する用語 (3件):
タイトルに関連する用語
J-GLOBALで独自に切り出した文献タイトルの用語をもとにしたキーワードです

前のページに戻る