文献
J-GLOBAL ID:202302260015736333   整理番号:23A3108714

世界モデルにおける未知の環境への転移

Transferring World Model to unseen task
著者 (6件):
資料名:
巻: 37th  ページ: ROMBUNNO.1G5-OS-21b-04(J-STAGE)  発行年: 2023年 
JST資料番号: U1701A  ISSN: 2758-7347  資料種別: 会議録 (C)
記事区分: 原著論文  発行国: 日本 (JPN)  言語: 日本語 (JA)
抄録/ポイント:
抄録/ポイント
文献の概要を数百字程度の日本語でまとめたものです。
部分表示の続きは、JDreamⅢ(有料)でご覧頂けます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。
モデルベース強化学習の一つである世界モデルは,エージェントの行動から生じる環境の遷移を予測するモデルである.世界モデルを用いることでサンプル効率の向上や未知のタスクへの適応を向上させることが期待されている.しかし,世界モデルは他の強化学習モデルに比べて規模が大きく,モデルの学習時間が長くなることや,モデルの実行が計算機の制約を受けることが懸念される.そのため,モデルの学習の効率化とモデルの規模の縮小を両立させるために転移学習とモデル圧縮を適用することで世界モデルの実用性を高めることを考えた.本調査の目的は上記の2つの手法の適用による世界モデルの性能への影響を検証にある.調査の結果2つの示唆が得られた.(1)提案手法(モデル圧縮+転移学習手法)を適用した場合の方が,モデル圧縮を適用せず目的のタスク単体で学習した場合よりも性能が高くなる可能性があること.(2)提案手法はハイパーパラメタの変更に頑健な可能性があること,である.(著者抄録)
シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

準シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

分類 (3件):
分類
JSTが定めた文献の分類名称とコードです
人工知能  ,  計算理論  ,  計算機シミュレーション 
タイトルに関連する用語 (2件):
タイトルに関連する用語
J-GLOBALで独自に切り出した文献タイトルの用語をもとにしたキーワードです

前のページに戻る