研究者
J-GLOBAL ID:201301059812081930   更新日: 2024年10月27日

西尾 瑞穂

ニシオ ミズホ | MIZUHO NISHIO
研究分野 (3件): ソフトウェア ,  生命、健康、医療情報学 ,  放射線科学
競争的資金等の研究課題 (13件):
  • 2023 - 2026 医用自然言語処理における大規模言語モデルの応用
  • 2022 - 2025 放射線診断学の画像とレポートを用いた深層学習の応用
  • 2023 - 2024 画像とレポートを用いた深層学習の応用による画像診断レポートのためのコンピューター支援診断システムの開発
  • 2019 - 2023 深層学習を用いた胸部単純X線写真の自動診断と医師への読影支援
  • 2019 - 2022 多様性肺結節データベースの構築と自己学習型画像診断支援システム開発の基礎研究
全件表示
論文 (133件):
  • Yasuhisa Kurata, Mizuho Nishio, Yusaku Moribata, Satoshi Otani, Yuki Himoto, Satoru Takahashi, Jiro Kusakabe, Ryota Okura, Marina Shimizu, Keisuke Hidaka, et al. Development of deep learning model for diagnosing muscle-invasive bladder cancer on MRI with vision transformer. Heliyon. 2024. 10. 16. e36144
  • Aki Miyazaki, Mizuho Nishio, Atsushi Fujita, Masaaki Kohta, Yasuyuki Kojita, Shintaro Horii, Takashi Sasayama, Takamichi Murakami. Predicting the O'Kelly-Marotta scale score after flow-diverter stent placement using silent MRA. Japanese journal of radiology. 2024
  • Yuki Himoto, Mizuho Nishio, Koji Yamanoi, Yuka Kuriyama Matsumoto. Reply to Letter to the Editor: Nodal infiltration in endometrial cancer: a prediction model using best subset regression. European radiology. 2024
  • Mizuki Tagami, Mizuho Nishio, Atsuko Yoshikawa, Norihiko Misawa, Atsushi Sakai, Yusuke Haruna, Mami Tomita, Atsushi Azumi, Shigeru Honda. Artificial intelligence-based differential diagnosis of orbital MALT lymphoma and IgG4 related ophthalmic disease using hematoxylin-eosin images. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2024
  • Takaaki Matsunaga, Atsushi Kono, Mizuho Nishio, Takahiro Yoshii, Hidetoshi Matsuo, Mai Takahashi, Takuya Takahashi, Yu Taniguchi, Hidekazu Tanaka, Kenichi Hirata, et al. Development and web deployment of prediction model for pulmonary arterial pressure in chronic thromboembolic pulmonary hypertension using machine learning. PloS one. 2024. 19. 4. e0300716
もっと見る
MISC (189件):
  • 西尾 瑞穂, 松尾 秀俊, 松永 卓明. 放射線技術学研究におけるPythonの活用術 応用編(11)胸部単純X線写真の診断レポートの自動作成. 日本放射線技術学会雑誌 = Japanese journal of radiological technology. 2024. 80. 6. 673-678
  • 重安 奈央子, 神田 知紀, 西岡 瑛子, 佐々木 康二, 元津 倫幸, 上嶋 英介, 上野 嘉子, 西尾 瑞穂, 橋村 宏美, 岡田 卓也, et al. 仙骨に発生した褐色脂肪腫の1例. Japanese Journal of Radiology. 2024. 42. Suppl. 32-32
  • 西尾瑞穂. Precision Medicine時代のAbdominal Imaging2024 前編 IV 腹部画像診断におけるITの技術革新と挑戦 1.腹部領域におけるITの最新動向 1)Transformerを用いた診断レポートの自動要約の研究. Innervision. 2024. 39. 3
  • 北村竜也, 西尾瑞穂, 西尾瑞穂, 池島健吾, 猿丸歩, 村垣善浩, 村上卓道, 保多隆裕. 胸部X線画像のAI診断における診断能の評価について. 日本生体医工学会大会プログラム・抄録集(Web). 2024. 63rd
  • Mizuho Nishio. Radiology report generation from chest X-ray image using 2-stage deep learning models. Kyoto University-University of Zurich Strategic Partnership Joint Symposium 2023. 2023
もっと見る
特許 (10件):
書籍 (3件):
  • Machine Learning/Deep Learning in Medical Image Processing
    MDPI 2021 ISBN:9783036526645
  • 学ぶ! 究める! 医療AI ディープラーニングの基礎から研究最前線まで
    株式会社 インナービジョン 2020
  • Lung Imaging and CADx 1st Edition
    Taylor & Francis 2019
講演・口頭発表等 (14件):
  • 癌の画像診断における AIの応用について
    (がん医療におけるAIの最新活用、兵庫県がん診療連携協議会「研修・教育部会セミナー」 2023)
  • 放射線科におけるAI診断
    (日本デジタルパソロジー研究会 第3回教育ウェブセミナー 2023)
  • 画像診断におけるデジタル化について
    (Liver Imaging Seminar in Kyoto 2022)
  • AI for diagnostic imaging of chest
    (第81回日本医学放射線学会総会 2022)
  • Deep Learningの肺結節への応用
    (第13回呼吸機能イメージング研究会学術集会 2022)
もっと見る
学歴 (1件):
  • 2012 - 2012 博士(医学)を取得
委員歴 (10件):
  • 2024/01 - 現在 BMC Medical Informatics and Decision Making Senior Editorial Board Member
  • 2022/08 - 現在 Frontiers in Nuclear Medicine Associate Editor
  • 2021/08 - 現在 Cancers Lead Guest Editor, Special Issue "Multi-Modality Imaging and Multi-Omics Approach of Cancers With Machine Learning/Deep Learning"
  • 2020/11 - 現在 International Journal of Imaging Systems and Technology EDITORIAL BOARD MEMBER
  • 2020/09 - 2023/12 BMC Medical Informatics and Decision Making EDITORIAL BOARD MEMBER
全件表示
受賞 (5件):
  • 2023/05 - The 50 most cited articles on artificial intelligence for lung cancer imaging Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning
  • 2022/04 - Annals of Nuclear Medicine 2021 Frequently Cited Papers Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on F-18 FDG-PET/CT.
  • 2021/02 - Translational Lung Cancer Research Reviewer of the Month (February, 2021)
  • 2019/12 - PLOS ONE. The top 10% most cited PLOS ONE authors of 2018 Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning
  • 2019/03 - Insights into Imaging Most Downloaded Paper Award 2018 Convolutional neural networks: an overview and application in radiology
※ J-GLOBALの研究者情報は、researchmapの登録情報に基づき表示しています。 登録・更新については、こちらをご覧ください。

前のページに戻る