研究者
J-GLOBAL ID:201701011839177030
更新日: 2024年01月30日
山田 哲也
Yamada Tetsuya
所属機関・部署:
職名:
准教授
競争的資金等の研究課題 (1件):
- 2017 - 2020 工業高等専門学校の一般科目教育におけるブレンド型学習の教材開発と指導効果の検証
論文 (17件):
-
Tetsuya Yamada. Global existence and boundedness of solutions to a parabolic attraction-repulsion chemotaxis system in R2 : The repulsive dominant case. Journal of Differential Equations. 2022. 315. 254-269
-
井之上和代, 中谷実伸, 柳原祐, 山田哲也, 相場大佑. 1年生基礎解析におけるオンライン学習会実践報告. 福井工業高等専門学校 研究紀要 自然科学・工学. 2022. 55. 55. 27-34
-
Toshitaka Nagai, Yukihiro Seki, Tetsuya Yamada. Global existence of solutions to a parabolic attraction-repulsion chemotaxis system in R2: The attractive dominant case. Nonlinear Analysis: Real World Applications. 2021. 62. 103357-103357
-
Toshitaka Nagai, Yukihiro Seki, Tetsuya Yamada. Boundedness of solutions to a parabolic attraction-repulsion chemotaxis system in R2: The attractive dominant case. Applied Mathematics Letters. 2021. 121. 107354-107354
-
相場大佑, 山田哲也. STACKを用いたオンラインテストの試み. 日本数学教育学会 高専・大学部会論文誌. 2021. 27. 1. 1-12
もっと見る
MISC (2件):
-
Tetsuya Yamada. Finite time blowup solutions to a four dimensional attraction-repulsion chemotaxis system in the balance case. preprint. 2021. 1-10
-
Tetsuya Yamada. Sharp asymptotic profiles of solutions to the Cauchy problem of an attraction-repulsion chemotaxis system in the whole space: the balance case. preprint. 2021. 1-16
講演・口頭発表等 (15件):
-
2次元放物型attraction-repulsion Keller-Segel系に対する初期値問題の解の有界性
(茨城高専数学セミナー 2023)
-
Global existence and boundedness of solutions to a two dimensional attraction-repulsion Keller-Segel model in the repulsive dominant case
(黒木場正城教授追悼研究集会 「非線型偏微分方程式と走化性」 2022)
-
Global existence and boundedness of solutions to a two dimensional attraction-repulsion Keller-Segel model in the repulsive dominant case
(Online Seminar on Chemotaxis 2022)
-
Global existence and blow up of solutions to an attraction-repulsion chemotaxis system in the balance case
(Chemotaxis and Nonlinear Parabolic Equations -In honor of Professor Takasi Senba on his 60yh birthday 2019)
-
Global existence and blow up of solutions to an attraction-repulsion chemotaxis system in the balance case
(日本数学会2019年度秋季総合分科会(函数方程式論分科会) 2019)
もっと見る
所属学会 (1件):
前のページに戻る