Erina Kinjo. On countability of Teichmüller modular groups for analytically infinite Riemann surfaces defined by generalized Cantor sets. Proceedings of the Japan Academy, Series A, Mathematical Sciences. 2024. 100. 10
Kinjo Erina. On the length spectrums of Riemann surfaces given by generalized Cantor sets. Kodai Mathematical Journal. 2024. 47. 1. 34-51
Erina Kinjo. On the length spectrum Teichmüller spaces of Riemann surfaces of infinite type. Conformal Geometry and Dynamics of the American Mathematical Society. 2018. 22. 1. 1-14
Erina Kinjo. On the length spectrum metric in infinite dimensional Teichmüller spaces. Annales Academiae Scientiarum Fennicae Mathematica. 2014. 39. 349-360
Erina Kinjo. On Teichmüller metric and the length spectrums of topologically infinite Riemann surfaces. Kodai Mathematical Journal. 2011. 34. 2