Masatoyo Nakajo, Daisuke Hirahara, Megumi Jinguji, Mitsuho Hirahara, Atsushi Tani, Hiromi Nagano, Koji Takumi, Kiyohisa Kamimura, Fumiko Kanzaki, Masaru Yamashita, et al. Applying deep learning-based ensemble model to [18F]-FDG-PET-radiomic features for differentiating benign from malignant parotid gland diseases. Japanese journal of radiology. 2025. 43. 1. 91-100
Mitsuho Hirahara, Masatoyo Nakajo, Ikumi Kitazano, Megumi Jinguji, Atsushi Tani, Koji Takumi, Kiyohisa Kamimura, Akihide Tanimoto, Takashi Yoshiura. Usefulness of the Primary Tumor Standardized Uptake Value of Iodine-123 Metaiodobenzylguanidine for Predicting Metastatic Potential in Pheochromocytoma and Paraganglioma. Molecular imaging and biology. 2024. 26. 6. 1005-1015
Masatoyo Nakajo, Daisuke Hirahara, Megumi Jinguji, Satoko Ojima, Mitsuho Hirahara, Atsushi Tani, Koji Takumi, Kiyohisa Kamimura, Mitsuru Ohishi, Takashi Yoshiura. Machine learning approach using 18F-FDG-PET-radiomic features and the visibility of right ventricle 18F-FDG uptake for predicting clinical events in patients with cardiac sarcoidosis. Japanese journal of radiology. 2024
Masatoyo Nakajo, Daisuke Hirahara, Megumi Jinguji, Satoko Ojima, Mitsuho Hirahara, Atsushi Tani, Koji Takumi, Kiyohisa Kamimura, Mitsuru Ohishi, Takashi Yoshiura. Machine learning approach using 18F-FDG-PET-radiomic features and the visibility of right ventricle 18F-FDG uptake for predicting clinical events in patients with cardiac sarcoidosis. Japanese Journal of Radiology. 2024
Masatoyo Nakajo, Megumi Jinguji, Atsushi Tani, Hiroaki Nagano, Yoshiaki Nakabeppul, Masayuki Nakajo, Takashi Yoshiura. Texture analysis of F-18-FDG PET/CT for predicting the malignant nature in thymic epithelial tumors. JOURNAL OF NUCLEAR MEDICINE. 2017. 58
M. Jinguji, M. Nakajo, M. Nakajo, Y. Nakabeppu, C. Koriyama, T. Yoshiura. Thymic involution after radioiodine therapy for Graves' disease. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING. 2015. 42. S727-S728