{{ $t("message.ADVERTISEMENT") }}
{{ $t("message.AD_EXPIRE_DATE") }}2021年04月
{{ $t("message.ADVERTISEMENT") }}
文献
J-GLOBAL ID:201202260371916600   整理番号:12A1546904

単語の共起や頻度に注目した注意要因及び類似事例の抽出

Method to Extract Remarkable Words and Grouped Accidents according to Co-occurrence and Frequency of Words
著者 (3件):
資料名:
巻: 51  号:ページ: 319-326  発行年: 2012年10月15日
JST資料番号: F0587A  ISSN: 0570-4480  CODEN: ANKOBG  資料種別: 逐次刊行物 (A)
記事区分: 原著論文  発行国: 日本 (JPN)  言語: 日本語 (JA)
抄録/ポイント:
抄録/ポイント
文献の概要を数百字程度の日本語でまとめたものです。
部分表示の続きは、JDreamⅢ(有料)でご覧頂けます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。
事故事例の統計解析により,事故の共通要因を抽出する試みがなされている。しかし,その手法は膨大な言葉で記された事故の詳細を,「操作ミス」,「能力不足」といった人為的に定められた分類要因へ分類する統計解析であるため,解析結果から直接事故の要因を知ることは難しい。そこで本手法は,自然言語処理の機械テキストマイニング技術を用い,形態素解析で事故報告書等の文章中の出現頻度の多い単語を注意要因として抽出し,注意要因を用いて原因表現をグループ化するという方法で類似事例を抽出する。グループ化された類似事例は,事例の数から事故の頻度を定量的に評価でき,頻発する事故の内容を知ることができる特徴がある。本手法をPEC-SAFER事故事例集に適用し注意要因や類似事例を抽出する事ができたので報告する。(著者抄録)
シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

準シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

分類 (3件):
分類
JSTが定めた文献の分類名称とコードです
安全管理  ,  人工知能  ,  自然語処理 
引用文献 (10件):
もっと見る
タイトルに関連する用語 (6件):
タイトルに関連する用語
J-GLOBALで独自に切り出した文献タイトルの用語をもとにしたキーワードです

前のページに戻る