Yuta Wakasugi. Revisit on Global Existence of Solutions for Semilinear Damped Wave Equations in $$\mathbb {R}^N$$ with Noncompactly Supported Initial Data. Trends in Mathematics. 2025. 309-320
Masahiro Ikeda, Motohiro Sobajima, Koichi Taniguchi, Yuta Wakasugi. Lifespan estimates for semilinear damped wave equation in a two-dimensional exterior domain. Calculus of Variations and Partial Differential Equations. 2024. 63. 9
Kimitoshi Tsutaya, Yuta Wakasugi. Remarks on Blow up of Solutions of Nonlinear Wave Equations in Friedmann-Lemaître-Robertson-Walker Spacetime. Springer Proceedings in Mathematics & Statistics. 2024. 181-197
Hideo Kozono, Yutaka Terasawa, Yuta Wakasugi. Liouville-type theorems for the Taylor-Couette-Poiseuille flow of the stationary Navier-Stokes equations. Journal of Fluid Mechanics. 2024. 989. A7
Mohamed Ali Hamza, Yuta Wakasugi, Shuji Yoshikawa. Asymptotic profiles for the Cauchy problem of damped beam equation with two variable coefficients and derivative nonlinearity. Discrete and Continuous Dynamical Systems. 2024. 44. 8. 2280-2308
小薗英雄、寺澤祐高、若杉勇太. Liouville-type theorems for the stationary and nonstationary Navier-Stokes equations. 数理解析研究所講究録. 2017. 2041. 2041. 112-121
若杉 勇太. Asymptotic profiles of solutions to the semilinear wave equation with time-dependent damping (Developments of the theory of evolution equations as the applications to the analysis for nonlinear phenomena). 数理解析研究所講究録. 2016. 1997. 140-155
西原 健二, 若杉 勇太. Critical exponent for the Cauchy problem to the weakly coupled damped wave system (Regularity and Singularity for Partial Differential Equations with Conservation Laws). 数理解析研究所講究録. 2015. 1962. 59-67
講演・口頭発表等 (57件):
Liouville-type theorems for the Taylor--Couette--Poiseuille flow of the stationary Navier--Stokes equations
(5th ISAAC Congress 2025)
Existence of solutions to the semilinear damped wave equation with non-$L^2$ slowly decaying data : polynomial nonlinearity case
(調和解析定例セミナー 2025)
消散型波動方程式の解の漸近挙動
(第11回室蘭連続講演会 2025)
Existence of solutions to the semilinear damped wave equation with non-L2 slowly decaying data: polynomial nonlinearity case
(第40回松山キャンプ 2025)
Blow-up of solutions of semilinear wave equations in Friedmann--Lemaitre--Robertson--Walker spacetime
(The 14th AIMS Conference at NYU Abu Dhabi 2024)