研究者
J-GLOBAL ID:201901001365134636   更新日: 2024年10月31日

NGUYEN Dai Hai

グエン ダイ ハイ | NGUYEN Dai Hai
所属機関・部署:
職名: 助教
ホームページURL (1件): https://sites.google.com/view/daihnguyen0909/
研究分野 (2件): 生命、健康、医療情報学 ,  数理情報学
競争的資金等の研究課題 (2件):
  • 2023 - 2026 On Optimal Transport-based Statistical Measures for Graph Structured Data and Applications
  • 2019 - 2020 質量分析のための機械学習手法構築
論文 (14件):
  • Moreau-Yoshida variational transport: a general framework for solving regularized distributional optimization problems. 2024
  • Zhang, Haishan, Nguyen, Dai Hai, Tsuda, Koji. Differentiable optimization layers enhance GNN-based mitosis detection. SCIENTIFIC REPORTS. 2023. 13. 1
  • Dai Hai Nguyen, Tetsuya Sakurai. Mirror variational transport: a particle-based algorithm for distributional optimization on constrained domains. Machine Learning. 2023
  • Dai Hai Nguyen, Koji Tsuda. On a linear fused Gromov-Wasserstein distance for graph structured data. Pattern Recognition. 2023. 138. 109351-109351
  • Dai Hai Nguyen, Koji Tsuda. Generating reaction trees with cascaded variational autoencoders. The Journal of Chemical Physics. 2022. 156. 4
もっと見る
書籍 (4件):
  • A Particle-Based Algorithm for Distributional Optimization on Constrained Domains via Variational Transport and Mirror Descent
    arXiv preprint arXiv:2208.00587 2022
  • A generative model for molecule generation based on chemical reaction trees
    arXiv preprint arXiv:2106.03394 2021
  • Creative Complex Systems
    Springer, Singapore 2021
  • Semi-supervised learning of hierarchical representations of molecules using neural message passing
    arXiv preprint arXiv:1711.10168 2017
講演・口頭発表等 (6件):
  • Mirror Variational Transport: A Particle-based Algorithm for Distributional Optimization on Constrained Domain
    (ECML PKDD 2023 : European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases)
  • Learning Subtree Pattern Importance for Weisfeiler- Lehman based Graph Kernels
    (ECML PKDD 2021 : European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2021)
  • ADAPTIVE: leArning DAta-dePendenT, concIse molecular VEctors for fast, accurate metabolite identification from tandem mass spectra
    (27th International Conference on Intelligent Systems for Molecular Biology (ISMB/ECCB 2019) 2019)
  • SIMPLE: Sparse Interaction Model over Peaks of moLEcules for fast, interpretable metabolite identification from tandem mass spectra
    (26th International Conference on Intelligent Systems for Molecular Biology (ISMB 2018) 2018)
  • Semi-supervised learning of hierarchical representations of molecules using neural message passing
    (Machine Learning for Molecules and Materials in NIPS 2017 2017)
もっと見る
学歴 (3件):
  • 2017 - 2020 京都大学 化学研究所附属バイオインフォマティクスセンター
  • 2017 - 2020 京都大学
  • 2008 - 2013 Hanoi University of Science and Technology School of Information and Communication Technology Computer Science
経歴 (3件):
  • 2022/04 - 現在 筑波大学 システム情報系
  • 2020/11 - 2022/03 東京大学 大学院新領域創成科学研究科 特任研究員
  • 2019/04 - 2020/09 京都大学 化学研究所 附属バイオインフォマティクスセンター 日本学術振興会特別研究員(DC2)
※ J-GLOBALの研究者情報は、researchmapの登録情報に基づき表示しています。 登録・更新については、こちらをご覧ください。

前のページに戻る