研究者
J-GLOBAL ID:202001006097692690
更新日: 2024年01月30日
ラフマディ ムハンマド フェブリアン
ラフマディ ムハンマド フェブリアン | Rachmadi Muhammad Febrian
所属機関・部署:
職名:
Postdoctoral Research Scientist
ホームページURL (1件):
https://febrianrachmadi.github.io/
競争的資金等の研究課題 (1件):
- 2020 - 2022 Development of Data-driven Prediction Model using 3D Multimodal Deep Neural Networks for Estimating the Evolution of White Matter Hyperintensities Associated with Small Vessel Disease in Brain MRI
論文 (24件):
-
Charissa Poon, Petteri Teikari, Muhammad Febrian Rachmadi, Henrik Skibbe, Kullervo Hynynen. A dataset of rodent cerebrovasculature from in vivo multiphoton fluorescence microscopy imaging. Scientific data. 2023. 10. 1. 141-141
-
Muhammad Febrian Rachmadi, Maria del C. Valdés-Hernández, Rizal Maulana, Joanna Wardlaw, Stephen Makin, Henrik Skibbe. Probabilistic Deep Learning with Adversarial Training and Volume Interval Estimation - Better Ways to Perform and Evaluate Predictive Models for White Matter Hyperintensities Evolution. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2021. 12928 LNCS. 168-180
-
Muhammad Febrian Rachmadi, Maria del C. Valdés-Hernández, Hongwei Li, Ricardo Guerrero, Rozanna Meijboom, Stewart Wiseman, Adam Waldman, Jianguo Zhang, Daniel Rueckert, Joanna Wardlaw, et al. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images. Computerized Medical Imaging and Graphics. 2020. 79. 101685-101685
-
Carlos Uziel Pérez Malla, Maria del C. Valdés Hernández, Muhammad Febrian Rachmadi, Taku Komura. Evaluation of enhanced learning techniques for segmenting ischaemic stroke lesions in brain magnetic resonance perfusion images using a convolutional neural network scheme. Frontiers in Neuroinformatics. 2019. 13. 33-33
-
Machmud R. Alhamidi, Dewa M.S. Arsa, Muhammad Febrian Rachmadi, Wisnu Jatmiko. 2-Dimensional homogeneous distributed ensemble feature selection. 2018 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2018. 2019. 367-372
もっと見る
前のページに戻る