Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al.: Physics-informed machine learning. Nature Reviews Physics, Vol. 3, pp. 422-440, 2021.
von Rueden, L., Mayer, S., Beckh, K. et al.: Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems, IEEE Transactions on Knowledge and Data Engineering, Vol. 35, No. 1, pp. 614-633, 2023.
Raissi, M., Perdikaris, P. and Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, Vol. 378, pp. 686-707, 2019.
Sahli Costabal, F., Yang, Y., Perdikaris, P. et al.: Physics-informed neural networks for cardiac activation mapping, Frontiers in Physics, Vol. 8, pp. 42, 2020.
Cai, S., Wang, Z., Fuest, F. et al.: Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks, Journal of Fluid Mechanics, Vol. 915, pp. A102, 2021.