Rchr
J-GLOBAL ID:200901000021080991   Update date: Mar. 19, 2024

Satoh Hiroyasu

サトウ ヒロヤス | Satoh Hiroyasu
Affiliation and department:
Job title: Associate Professor
Homepage URL  (1): https://shiroyasu.github.io/
Research field  (2): Geometry ,  Geometry
Research keywords  (14): Hadamard空間 ,  確率測度空間 ,  熱核 ,  Fisher情報計量 ,  調和空間 ,  Damek-Ricci空間 ,  確率密度関数 ,  リーマン多様体 ,  無限遠境界 ,  Busemann関数 ,  スカラー曲率 ,  ポアソン核 ,  Poisson核 ,  自己双対Weylテンソル
Research theme for competitive and other funds  (4):
  • 2015 - 2018 Geometry of barycenter map on Hadamard manifolds admitting Busemann-Poisson kernel
  • 2009 - 2011 Riemannian Geometry and Information Geometry of Poisson kernels and heat kernels
  • 2006 - 2008 Differential geometric study of four dimensional diffeomorphism Poincare conjecture and variant Yamabe invariants
  • 2005 - 2008 Convergence・collapsing theory of manifolds, Ricci flows and the geometry and analysis of singular spaces
Papers (26):
  • Mitsuhiro Itoh, Hiroyasu Satoh. Geometric mean of probability measures and geodesics of Fisher information metric. Mathematische Nachrichten. 2023. 296. 5. 1901-1927
  • Mitsuhiro Itoh, Hiroyasu Satoh. Information geometry of the space of probability measures and barycenter maps. Sugaku Expositions. 2021. 34. 2. 231-253
  • Mitsuhiro Itoh, Hiroyasu Satoh. Harmonic manifolds of hypergeometric type and spherical Fourier transform. Differential Geometry and its Applications. 2020. 71. 101646-101646
  • Mitsuhiro Itoh, Hiroyasu Satoh. Harmonic Hadamard manifolds and Gauss hypergeometric differential equations. Publications of the Research Institute for Mathematical Sciences. 2019. 55. 3. 531-564
  • Hiroyasu Satoh. Volume entropy of harmonic Hadamard manifolds of hypergeometric type(Researches and Overseas Activities)--(Research Reports). Report of researches, Nippon Institute of Technology. 2019. 49. 2. 67-68
more...
Books (2):
  • 大学数学これだけは : 精選1000問 第2版(および 解答集)
    学術図書出版社 2018 ISBN:9784780606829
  • 大学数学これだけは : 精選1000問(および 解答集)
    学術図書出版社 2018 ISBN:9784780606508
Lectures and oral presentations  (24):
  • Geometry of harmonic manifolds of hypergeometric type
    (Infosys lecture at Harish-Chandra Research Institute (series of 4 lectures) 2024)
  • The horosphere version of the Osserman conjecture and related topics
    (The 2nd Shot of The 13th MSJ-SI "Differential Geometry and Integrable Systems" The 5th International Workshop Geometry of Submanifolds and Integrable Systems 2022)
  • 超幾何型調和Hadamard多様体の体積エントロピーについて
    (日本数学会2019年度秋季総合分科会 2019)
  • Volume entropy of harmonic Hadamard manifolds of hypergeometric type
    (Differential Geometry and its Applications 2019)
  • 調和多様体と超幾何微分方程式
    (Tsukuba Workshop on Pure and Applied Mathematics 2018 2018)
more...
Education (3):
  • 1999 - 2004 筑波大学大学院 博士課程 数学研究科 数学専攻
  • 1995 - 1999 Tokyo Gakugei University Faculty of Education
  • 1992 - 1995 北海道旭川西高等学校 普通科
Professional career (3):
  • Doctor of Philosophy in Science (University of Tsukuba)
  • Master of Science (University of Tsukuba)
  • Bachelor of Education (Tokyo Gakugei University)
Work history (5):
  • 2018/04 - 現在 Nippon Institute of Technology Liberal Arts and Sciences Associate Professor
  • 2014/04 - 2018/03 Nippon Institute of Technology Depertment of Human Science and Common Education, Facullty of Engineering Associate Professor
  • 2009/05 - 2014/03 Tokyo Denki University School of Information Environment Assistant Professor
  • 2009/04 - 2009/09 Shibaura Institute of Technology College of Engineering Temporary Lecturer
  • 2004/04 - 2009/03 University of Tsukuba Graduate School of Pure and Applied Science Research Associate
Committee career (2):
  • 2020/07 - 2024/06 National Personnel Authority 国家公務員採用総合職試験(数理科学・物理・地球科学)試験専門委員
  • 2015/07 - 2023/06 日本数学会 情報システム運用委員会
Association Membership(s) (4):
Mathematics Education Society of Japan ,  JAPANESE SOCIETY FOR ENGINEERING EDUCATION ,  Japan Society for Symbolic and Algebraic Computation ,  Mathematical Society of Japan
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page