Rchr
J-GLOBAL ID:200901015504911581   Update date: Nov. 11, 2024

Kawazumi Nariya

カワズミ ナリヤ | Kawazumi Nariya
Affiliation and department:
Job title: Professor
Homepage URL  (1): http://www.ms.u-tokyo.ac.jp/~kawazumi/
Research field  (1): Geometry
Research keywords  (4): リーマン面のモジュライ空間 ,  位相幾何学 ,  Moduli space of Riemann surfaces ,  Topology
Research theme for competitive and other funds  (51):
  • 2022 - 2026 リーマン面に関連する位相幾何学の代数的展開
  • 2020 - 2025 数論トポロジーと種々のモノドロミー不変量の新たな展開
  • 2018 - 2023 Various evolutions of Teichmuller theory
  • 2018 - 2023 Geometry of the braid groups and mapping class groups and their growth
  • 2019 - 2022 Topological Study on Riemann Surfaces through Higher Cocycles
Show all
Papers (17):
  • Nariya Kawazumi, Christine Vespa. On the wheeled PROP of stable cohomology of Aut(Fn) with bivariant coefficients. Algebraic & Geometric Topology. 2023. 23. 7. 3089-3128
  • Anton Alekseev, Nariya Kawazumi, Yusuke Kuno, Florian Naef. Goldman-Turaev formality implies Kashiwara-Vergne. Quantum Topology. 2020. 11. 4. 657-689
  • Anton Alekseev, Nariya Kawazumi, Yusuke Kuno, Florian Naef. The Goldman-Turaev Lie bialgebra in genus zero and the Kashiwara-Vergne problem. Advances in Mathematics. 2018. 326. 1-53
  • KAWAZUMI Nariya. The mapping class group orbits in the framings of compact surfaces. Quarterly J. Math. 2018
  • Shinji Fukuhara, Nariya Kawazumi, Yusuke Kuno. Self-intersections of curves on a surface and Bernoulli numbers. Osaka Journal of Mathematics. 2018
more...
MISC (23):
  • Kawazumi Nariya. A regular homotopy version of the Goldman-Turaev Lie bialgebra, the Enomoto-Satoh traces and the divergence cocycle in the Kashiwara-Vergne problem (Complex Analysis and Topology of Discrete Groups and Hyperbolic Spaces). RIMS Kokyuroku. 2015. 1936. 137-141
  • KAWAZUMI NARIYA. ON A REAL-VALUED FUNCTION ON THE MODULI OF RIEMANN SURFACES (Analysis and Topology of Discrete Groups and Hyperbolic Spaces). RIMS Kokyuroku. 2009. 1660. 92-94
  • 河澄 響矢. 幾何とトポロジー--イメージ力を養う (特集 数学の直観的理解--いかに使いこなすか). 数理科学. 2007. 45. 5. 50-54
  • N Kawazumi. Weierstrass points and Morita-Mumford classes on hyperelliptic mapping class groups. TOPOLOGY AND ITS APPLICATIONS. 2002. 125. 3. 363-383
  • Kawazumi Nariya. HARMONIC MAGNUS EXPANSIONS (Hyperbolic Spaces and Discrete Groups II). RIMS Kokyuroku. 2002. 1270. 11-23
more...
Books (1):
  • An infinitesimal approach to the stable cohomology of the moduli of Riemann surfaces.
    in: proceednigs of the 37th. Taniguchi Symposium on 'Topology and Teichm(]E88DB[)llir theory', World Scientific 1996
Lectures and oral presentations  (37):
  • 曲面上の高次ループ演算について
    (多様体のトポロジーの進展 2024)
  • Fenchel-Nielsen 座標による Weil-Petersson シンプレクティック形式についての Wolpert の公式の位相的証明
    (リーマン面に関連する位相幾何学 2024)
  • Fenchel-Nielsen 座標による Weil-Petersson シンプレクティック形式についての Wolpert の公式の位相的証明
    (トポロジー火曜セミナー 2024)
  • Fenchel-Nielsen 座標による Weil-Petersson シンプレクティック形式についての Wolpert の公式の位相的証明
    (東北大学幾何セミナー 2024)
  • A topological proof of Wolpert's formula of the Weil-Petersson symplectic form in terms of the Fenchel-Nielsen coordinates
    (Seminar on “Algebra, geometry and graph complexes”, Mathematics Research Unit, University of Luxembourg 2023)
more...
Education (2):
  • - 1989 The University of Tokyo
  • - 1987 The University of Tokyo Faculty of Science Department of Mathematics
Professional career (2):
  • Doctor of Mathematical Sciences (The University of Tokyo)
  • Master of Sciences (The University of Tokyo)
Work history (5):
  • 2019/04 - 現在 The University of Tokyo Graduate School of Mathematical Sciences
  • 1999/04 - 2019/03 The University of Tokyo Graduate School of Mathematical Sciences
  • 1995/04 - 1999/03 Hokkaido University
  • 1994/04 - 1995/03 Hokkaido University School of Science Mathematics
  • 1989/04 - 1994/03 The University of Tokyo Faculty of Science Department of Mathematics
Awards (1):
  • 2021/09 - 日本数学会幾何学賞委員会 日本数学会幾何学賞 Lie 代数の手法による曲面の写像類群の研究
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page