Research keywords (4):
微分方程式・定性的理論・振動理論
, Oscillation theory
, Qualitative theory
, Ordinary differential equations
Research theme for competitive and other funds (12):
2021 - 2026 非線形常微分方程式の解の定性解析と定量解析:新解析技法の創造と展開
2016 - 2023 非線形微分方程式の定性解析の新機軸:非線形振動理論の新たな局面を迎えて
2011 - 2016 Precise asymptotic analysis of solutions of nonlinear differential equations by means of regular variation: The theoretical face and back sides for oscillation theory
2011 - 2015 Asymptotic Analysis of quasilinear ordinary differential equations and its application to asymptotic analysis of elliptic equations
2007 - 2010 Toward detailed analysis for oscillation and non-oscillation of nonlinear ordinary differential equations
2005 - 2008 Asymptotic Analysis of nonlinear ordinary differential equations and its applications
2004 - 2006 主要部が非線形微分作用素である高階非線形常微分方程式の解の構造の研究
2002 - 2003 非線形常微分方程式の解の振動性と大域的漸近解析に関する研究
非線形微分方程式の振動理論, 定性的理論
Oscillatory and Qualitative theory of nonlinear differential equations
Qualitative theory of nonlinear differential systems
Qualitative theory of nonlinear differential equations
Show all
Papers (41):
Jaroslav Jaroš, Kusano Takaŝi, Tomoyuki Tanigawa. Oscillation criteria for fourth order half-linear differential equations. Archivum Mathematicum. 2020. 56. 2. 115-125
Jaroslav Jaroš, Kusano Takaŝi, Tomoyuki Tanigawa. Nonoscillatory solutions of planar half-linear differential systems: A Riccati equation approach. Electronic Journal of Qualitative Theory of Differential Equations. 2018. 2018
TANIGAWA Tomoyuki. Nonoscillation theorems for a class of fourth order quasilinear differential equations with deviating arguments. Bulletin of Toyama Technical College. 2004. 38. 67-70