Rchr
J-GLOBAL ID:200901039696353869   Update date: Sep. 20, 2024

Watanabe Kazuho

ワタナベ カズホ | Watanabe Kazuho
Affiliation and department:
Job title: Professor
Homepage URL  (1): http://www.lisl.cs.tut.ac.jp/wkazuho/index.html
Research field  (1): Intelligent informatics
Research keywords  (1): 統計的学習理論
Research theme for competitive and other funds  (10):
  • 2019 - 2024 Information-Theoretic View and Design of Generalized Bayesian Learning
  • 2016 - 2019 Dynamic layout optimization for annotated information visualization
  • 2015 - 2019 Design Principles of Learning and Inference Models with Optimal Latent Distributions
  • 2013 - 2018 Consolidation of Visualization Platform toward Facilitating Sparse Modeling
  • 2013 - 2016 Extension of nonparametric Bayesian methods to semiparametric models and its applications
Show all
Papers (69):
  • Masahiro Kobayashi, Kazuho Watanabe. Unbiased Estimating Equation and Latent Bias under f-Separable Bregman Distortion Measures. IEEE Transactions on Information Theory. 2024. 70. 8. 5763-5781
  • Akiharu Omae, Kazuho Watanabe. Approximate Empirical Bayes Estimation of the Regularization Parameter in l1 Trend Filtering. IEEE International Symposium on Information Theory (ISIT). 2022. 462-467
  • Shigeo Takahashi, Akane Uchita, Kazuho Watanabe, Masatoshi Arikawa. Gaze-driven placement of items for proactive visual exploration. Journal of Visualization. 2021
  • Masahiro Kobayashi, Kazuho Watanabe. Generalized Dirichlet-process-means for f-separable distortion measures. Neurocomputing. 2021. 458. 667-689
  • Masato Kikuchi, Kento Kawakami, Kazuho Watanabe, Mitsuo Yoshida, Kyoji Umemura. Unified Likelihood Ratio Estimation for High- to Zero-frequency N-grams. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. 2021. 105. 8. 1059-1074
more...
MISC (34):
more...
Books (1):
  • Variational Bayesian learning theory
    Cambridge University Press 2019 ISBN:9781107076150
Lectures and oral presentations  (53):
  • Rate-distortion theoretical views of Bayesian learning coefficients
    (IMSI Workshop: Bayesian Statistics and Statistical Learning 2023)
  • 逆数ダイバージェンスにおける推定方程式の不偏性とその多次元拡張
    (第46回情報理論とその応用シンポジウム 2023)
  • γクロスエントロピーを用いたロバストVAEの提案
    (情報論的学習理論ワークショップ 2023)
  • 経験分布とリサンプリングを用いたfダイバージェンスに基づく推定
    (情報論的学習理論ワークショップ 2023)
  • 逆ガウスモデルにおける推定方程式の不偏性とその一般化
    (電気・電子・情報関係学会東海支部連合大会 2023)
more...
Education (1):
  • - 2006 Tokyo Institute of Technology Interdisciplinary Science and Engineering Intelligent Systems Science
Professional career (1):
  • 博士(工学) (東京工業大学)
Work history (7):
  • 2024/09 - 現在 Toyohashi University of Technology Department of Computer Science and Engineering Professor
  • 2019/04 - 2024/08 Toyohashi University of Technology Department of Computer Science and Engineering Associate Professor
  • 2014/04 - 2019/03 Toyohashi University of Technology Department of Computer Science and Engineering Lecturer
  • 2009/04 - 2014/03 Nara Institute of Science and Technology Graduate School of Information Science Assistant Professor
  • 2007/04 - 2009/03 The University of Tokyo Graduate School of Frontier Sciences Postdoctoral Researcher / Assistant Professor
Show all
Committee career (10):
  • 2012/10 - 現在 Zentralblatt MATH reviewer
  • 2009/08 - 現在 AMS Mathematical Reviews reviewer
  • 2024/04 - 2025/03 電気・電子・情報関係学会東海支部連合大会委員会 会計幹事・プログラム編集委員
  • 2023/04 - 2025/03 電子情報通信学会 東海支部会計幹事
  • 2024 - 2024 情報理論とその応用シンポジウムプログラム委員
Show all
Awards (3):
  • 2013/11 - IEICE SITA Subsociety SITA encouragement award Rate-distortion function for gamma sources under absolute-log distortion
  • 2010/07 - The German Classification Society Best Paper Method Award Simultaneous Clustering and Dimensionality Reduction Using Variational Bayesian Mixture Model
  • 2008/09 - Japanese Neural Network Society Best Paper Award Stochastic complexities of general mixture models in variational Bayesian learning
Association Membership(s) (2):
IEEE ,  THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page