Rchr
J-GLOBAL ID:200901039844031957
Update date: Sep. 19, 2024
Tsugawa Kotaro
ツガワ コウタロウ | Tsugawa Kotaro
Affiliation and department:
Job title:
Professor
Research field (1):
Basic analysis
Research keywords (1):
partial differential equations
Research theme for competitive and other funds (7):
- 2017 - 2023 非線形分散型方程式の代数的構造と初期値問題の適切性
- 2013 - 2018 An investigation of symmetries in the geometric structure and existence of global solutions to nonlinear dispersive wave equations
- 2013 - 2017 Cauchy problem of nonlinear dispersive equations
- 2010 - 2014 geometric structure of nonlinearity and singularity of solutions for wave equations
- 2008 - 2012 Analysis of properties of solutions to dispersive equations via canonical transforms and comparison principle
- 2006 - 2008 Solvability and properties of solutions of the Cauchy problem of equations related to the KdV equation
- 2006 - 2008 Geometric approach to fluid mechanics
Show all
Papers (17):
-
Takamori Kato, Kotaro Tsugawa. Cancellation properties and unconditional well-posedness for the fifth order KdV type equations with periodic boundary condition. Partial Differential Equations and Applications. 2024. 5. 3
-
Tomoyuki TANAKA, Kotaro TSUGAWA. Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients. Osaka J. Math. 2022. 59. 465-480
-
Isao Kato, Kotaro Tsugawa. SCATTERING AND WELL-POSEDNESS FOR THE ZAKHAROV SYSTEM AT A CRITICAL SPACE IN FOUR AND MORE SPATIAL DIMENSIONS. DIFFERENTIAL AND INTEGRAL EQUATIONS. 2017. 30. 9-10. 763-794
-
K. Tsugawa. Local well-posedness and parabolic smoothing effect of fifth order dispersive equations on the torus. RIMS Kokyuroku Bessatsu. 2016. B60. 177-193
-
Kotaro Tsugawa. LOCAL WELL-POSEDNESS OF THE KDV EQUATION WITH QUASI-PERIODIC INITIAL DATA. SIAM JOURNAL ON MATHEMATICAL ANALYSIS. 2012. 44. 5. 3412-3428
more...
Lectures and oral presentations (95):
-
Local well-posedness of derivative Schrodinger equations on the torus
(French-Japanese one meeting in Tours 2023)
-
Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients
(Mathematical Analysis of Nonlinear Dispersive and Wave Equations 2022)
-
Well-posedness and parabolic smoothing effect for higher order Schrodinger type equations with constant coefficients
(神楽坂解析セミナー 2020)
-
Well-posedness and parabolic smoothing effect for higher order linear Schrodinger type equations on the torus
(The 37th Kyushu Symposium on Partial Differential Equations 2020)
-
Ill-posedness of derivative nonlinear Schrodinger equations on the torus
(東北大学応用数学セミナー 2018)
more...
Education (4):
- 2001 - 2003 Tohoku University Graduate School, Division of Natural Science 研究生
- 1998 - 2001 The University of Tokyo Graduate School, Division of Mathematical Sciences 数理科学専攻
- 1996 - 1998 The University of Tokyo Graduate School, Division of Mathematical Sciences 数理科学専攻
- 1991 - 1996 The University of Tokyo 理科I類(理学部数学科)
Professional career (2):
- 修士(数理科学) (東京大学)
- 博士(数理科学) (東京大学)
Work history (10):
- 2018/04 - 中央大学理工学部教授
- 2007/04 - 2018/03 名古屋大学大学院多元数理科学研究科・准教授
- 2015/04 - 2016/03 京都大学大学院理学研究科非常勤講師
- 2015/08 - 2015/08 清華大学(中国)集中講義講師
- 2011/05 - 2012/03 トロント大学客員研究員(日本学術振興会特定国派遣研究者)
- 2005/04 - 2007/03 名古屋大学大学院多元数理科学研究科・助教授
- 2005/03 - 2005/03 マックスプランク数学研究所(ライプチヒ)ポストドクター
- 2004/09 - 2005/03 スイス連邦工科大学ポストドクター
- 2003/09 - 2004/09 フランス高等科学研究所ポストドクター
- 2003/04 - 2003/09 東北学院大学工学部環境土木工学科非常勤講師
Show all
Association Membership(s) (1):
Return to Previous Page