Rchr
J-GLOBAL ID:200901051159346333   Update date: Dec. 16, 2024

Shimomura Tetsu

シモムラ テツ | Shimomura Tetsu
Affiliation and department:
Research theme for competitive and other funds  (16):
  • 2018 - 2020 楕円型偏微分方程式に対するポテンシャル論的研究
  • 2015 - 2017 Potential theoretic study for elliptic partial differential equations
  • 2012 - 2014 Potential theoretic study for elliptic partial differential equations
  • 2008 - 2012 Research on potential problems from various aspects
  • 2009 - 2011 Potential theoretic study of elliptic partial differential equations
Show all
Papers (264):
  • Ohno, T., Shimomura, T. Campanato-Morrey spaces and variable Riesz potentials. ACTA MATHEMATICA HUNGARICA. 2024. 174. 1. 62-74
  • Futamura, Toshihide, Shimomura, Tetsu. Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces. CZECHOSLOVAK MATHEMATICAL JOURNAL. 2024. 74. 3. 905-913
  • Mizuta, Yoshihiro, Shimomura, Tetsu. Hardy-Sobolev inequalities and boundary growth of Sobolev functions for double phase functionals on the half space. RICERCHE DI MATEMATICA. 2024. 73. 4. 1707-1723
  • Mizuta, Yoshihiro, Shimomura, Tetsu. Boundedness of Hardy operators in the unit ball of double phase. HOKKAIDO MATHEMATICAL JOURNAL. 2024. 53. 2. 285-306
  • Ohno, Takao, Shimomura, Tetsu. Trudinger-type inequalities for variable Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over metric measure spaces. MATHEMATISCHE NACHRICHTEN. 2024. 297. 4. 1248-1274
more...
Lectures and oral presentations  (6):
  • Musielak-Orlicz-Morrey空間におけるソボレフの不等式
    (日本数学会春季総合分科会 2021)
  • Boundary behavior of monotone Sobolev functions on John domains
    (2017)
  • Sobolev embeddings for variable exponent Riesz potentials
    (RIMS 共同研究 「実解析及び変分を用いた関数不等式に付随する偏微分方程式の研究」 2015)
  • Sobolev inequalities for variable exponent Orlicz spaces
    (2010)
  • ソボレフの定理について
    (日本数学会秋季総合分科会 2007)
more...
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page