Rchr
J-GLOBAL ID:200901056188779925   Update date: Nov. 18, 2024

Furutani Kenro

フルタニ ケンロウ | Furutani Kenro
Affiliation and department:
Job title: 特別研究員
Research field  (2): Basic analysis ,  Mathematical analysis
Research keywords  (25): Determinant of elliptic and sub-elliptic operator ,  Fredholm operator ,  Fourier integral operator ,  Grushin type operator ,  bi-characteristic flow ,  geodesic flow ,  Bott periodicity ,  K-group ,  Symplectic Hilbert space ,  Spectral flow ,  Maslov index ,  Lagrangian submanifold ,  Polarization ,  Laplacian and sub-Laplacian ,  nilpotent Lie algebra ,  contact manifold ,  pseudo differential operator ,  geometric quantization ,  heat kernel ,  spectral zeta function ,  Clifford algebra and pseudo H-type Lie algebra ,  sub-Riemann structure ,  elliptic and sub-elliptic operator ,  大域解析学及び関数解析学 ,  Global Analysis and Functional Analysis
Research theme for competitive and other funds  (27):
  • 2024 - 2027 Study of global analysis and related geometry
  • 2020 - 2023 From elliptic operators to sub-elliptic operators
  • 2017 - 2021 Study of the Analysis on Manifolds
  • 2014 - 2017 多様体上の解析学の研究
  • 2011 - 2015 Development of nilpotent geometry and nilpotent analysis II
Show all
Papers (59):
more...
MISC (8):
  • Wolfram Bauer, Kenro Furutani. Spectral zeta functions of a Riemannian manifold of positive constant curvature. Proceeding of the "Sophia symposium 2007". Modern mathematics and its applications to modern Technology. 2007. 1. 3. 82-88
  • Wolfram Bauer, Kenro Furutani. Spectral zeta functions of a Riemannian manifold of positive constant curvature. Proceeding of the "Sophia symposium 2007". Modern mathematics and its applications to modern Technology. 2007. 1. 3. 82-88
  • Kenro Furutani. Complexified Hopf fibration and a pseudo-differential operator. 数理解析研究所講究録 RIMS共同研究 Analytic Function Space and Their Operators. 2006. 1519. 38-58
  • Kenro Furutani, Chisato Iwasaki. Grusin operator and heat kernel on nilpotent Lie groups. 数理解析研究所講究録. 2006. 1502. 173-184
  • Kenro Furutani. Complexified Hopf fibration and a pseudo-differential operator. 数理解析研究所講究録 RIMS共同研究 Analytic Function Space and Their Operators. 2006. 1519. 38-58
more...
Books (3):
  • Heat Kernels for Elliptic and Sub-elliptic Operators, Methods and Techniques
    Birkhauser verlag 2010
  • Determinants of Laplacians on Heisenberg Manifolds
    Vaxjo大学(Sweden) Reports from MSI 2003
  • Criss -Cross Reduction of the maslov index and a proof of the Yoshida-Nicolaescu Theorem
    Roskilde大学(デンマーク) 1999
Lectures and oral presentations  (73):
  • Radon transformation and Fourier integral operators
    (Analysis and Mathematical Physics seminar, Leibniz University of Hannover, 18/July/2023, Germany. 2023)
  • Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane
    (2022)
  • Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane
    (Interaction of various geometry, Nara Women's University,Nara, 01/October/2022, Japan. \smallski 2022)
  • Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane
    (Geometry seminar at Rirsumeikan University 2021)
  • Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane
    (Himeji conference on Partial Differential Equations, Himeji, Japan 2021. 2021)
more...
Education (4):
  • - 1974 Kyoto University
  • - 1974 Kyoto University Graduate School, Division of Natural Science Mathematics
  • - 1972 Kyoto University Faculty of Science
  • - 1972 Kyoto University Faculty of Science Mathematics
Professional career (1):
  • Doctor of Science (Kyoto University)
Work history (4):
  • 1989 - 1995 Tokyo University of Science Faculty of Science and Technology
  • 1989 - 1995 Associate Professor of Science University of Tokyo
  • 1995 - - 東京理科大学理工学部数学科 教授
  • 1995 - - Professor of Science University of Tokyo
Committee career (2):
  • 2006 - 2008 理工学研究科長 2006ー2008
  • 2006 - 2008 Dean of graduate school of science and technology(2006-2008)
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page