Rchr
J-GLOBAL ID:200901058222062795   Update date: Aug. 25, 2022

Minoru Yoshida

Minoru Yoshida
Affiliation and department:
Job title: Professor
Research field  (4): Basic analysis ,  Mathematical physics and basic theory ,  Basic mathematics ,  Applied mathematics and statistics
Papers (42):
  • Non-local Markovian symmetric forms on infinite dimensional spaces (1: closability and the quasi regularlity). 2021. 1-48
  • Masudur Rahman. An analysis of electrocardiograms through the wavelet transform with pseudo differential operator like operators. Proceedings of 40th JSST Annual. 2021. 40. To aapare
  • Sergio Albeverio et. Non-local Markovian symmetric forms on infinite dimensional spaces; Part 2. Examples: non local stochastic quantization of space cut-off quantum fields and infinite particle systems. arXiv.org. 2021. 2105.05593v1
  • Sergio Albeverio, Toshinao Kagawa, Yumi Yahagi, Minoru W. Yoshida. Non-local Markovian symmetric forms on infinite dimensional space, Part 1, Closability and qyasi regularlity. arXiv.org. 2020. arXiv:2006.13571. 1-50
  • Sergio Albeverio. A formulation of quasi-regular non-local Dirichlet forms on F{\'e}chet spaces with application to a stochastic quantization of ${\Phi}^4_3$ field. Rims Kokyu-roku. 2019. 2116. 85-94
more...
Books (4):
  • Let's Use White Noise
    World Sci. Publ. 2017
  • 理工系学生のための 確率統計講義
    培風館 2014 ISBN:9784563010164
  • 工科系学生のための 微分程式講義
    培風館 2013 ISBN:9784563011482
  • 理工系の微分積分入門
    学術図書出版 2007
Lectures and oral presentations  (8):
  • Applications of non-local Dirichlet forms defined on infinite dimensional spaces.
    (2019)
  • On Hida distribution and renormaliztion methods for quantum field theories
    (QBIC work shop 2019 2019)
  • non-local Dirichlet forms on infinite dimensional spaces
    (Random Transformations and Invariance in Stochastic Dynamics 2019)
  • A review of stochastic analytic approachs of Euclidean quantum field theory
    (International conference Mathematical Analysis and its Application to Mathematical Physics 2018)
  • Non-local Dirichlet forms on infinite dimensional topological vector spaces.
    (The 9th International Conference on Stochastic Analysis and its Applications 2018)
more...
Committee career (2):
  • 2007/04 - 2008/03 Mathematical Society of Japan
  • 2007/04 - 2008/03 日本数学会 大阪地区代議員
Association Membership(s) (1):
Mathematical Society of Japan
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page