Rchr
J-GLOBAL ID:200901060854346955   Update date: Jul. 17, 2024

Masada Tomonari

マサダ トモナリ | Masada Tomonari
Affiliation and department:
Job title: 教授
Homepage URL  (1): https://tomonari-masada.github.io/
Research field  (3): Information theory ,  Intelligent informatics ,  Database science
Research keywords  (4): probabilistic models ,  text mining ,  machine learning ,  data mining
Research theme for competitive and other funds  (8):
  • 2021 - 2024 Topic models bridging between documents as members composing a corpus and documents as sequences composed by words
  • 2018 - 2021 Research on the effectiveness of using RNN in topic models
  • 2019 - 2020 Exploring Data Processing and Analysis Methods for Predicting Defect Occurrences in Semiconductor Production Lines
  • 2015 - 2018 A Study on Digital Library System for Experimental Information Extraction, Visualization and Recommendation
  • 2014 - 2017 Tiny data mining: reconstruction of large scale data with probability distributions as bases
Show all
Papers (66):
more...
MISC (26):
  • Text Mining for "Zenkyoto Generation". 2020. 2020. 297-302
  • NIWA Kazuhisa, MASADA Tomonari, FUKUZAWA Katsuhiko, MINE Mariko, YAMAJI Hiroki. Learning Tasks That Enhance Student Participation in Lecture Class. Journal of the Center for Educational Innovation Nagasaki University. 2014. 5. 5. 19-24
  • Tomonari Masada. Unsupervised Segmentation of Bibliographic Elements with Latent Permutations. International Journal of Organizational and Collective Intelligence. 2011. 2. 2. 49-62
  • SHIDA Sayaka, DOHI Keisuke, SHIBATA Yuichiro, HAMADA Tsuyoshi, MASADA Tomonari, OGURI Kiyoshi. An Automatic Optimization Technique of DMA Transfer and Data Allocation for Reconfigurable Machines. The IEICE transactions on information and systems. 2009. 92. 12. 2127-2136
  • ARAKI Yuta, SHIBATA Yuichiro, HAMADA Tsuyoshi, MASADA Tomonari, OGURI Kiyoshi. Evaluation of circuit proliferation method that uses concept of pressure in PCA. IEICE technical report. 2009. 109. 320. 19-24
more...
Lectures and oral presentations  (35):
  • Documents as a Bag of Maximal Substrings: An Unsupervised Feature Extraction for Document Clustering
    (13th International Conference on Enterprise Information Systems (ICEIS 2011) 2011)
  • Semi-supervised Bibliographic Element Segmentation with Latent Permutations
    (International Conference on Asia-Pacific Digital Libraries (ICADL 2011) 2011)
  • Infinite Latent Process Decomposition
    (IEEE International Conference on Bioinformatics & Biomedicine (BIBM 2010) 2010)
  • Unsupervised Segmentation of Bibliographic Elements with Latent Permutations
    (The 1st International Workshop on Web Intelligent Systems and Services (WISS 2010) 2010)
  • 시간에 따른 의미 변화 인지를 위한 가중치 구조의 적용
    (2010 IEEK Summer Conference 2010)
more...
Works (6):
  • 部分文字列の出現頻度を文書の特微量として用いたベイズ的トピックモデルに関する研究
    2011 - 2012
  • 統計学的ライムを利用した情報ナビゲーション
    2010 - 2012
  • 外的知識を利用としたッマルチトピック・モデルによる多様なテキスト情報の連結
    2010 - 2011
  • 「情報処理学会論文誌:データベース(TOD)」編集委員
    2007 - 2011
  • テキストの時間情報を利用したマルチトピック・ モデルによる文書間・単語間類似度への時間性の導入
    2009 - 2010
more...
Education (4):
  • - 2004 The University of Tokyo
  • - 1999 The University of Tokyo
  • - 1995 The University of Tokyo
  • - 1993 The University of Tokyo Faculty of Science Department of Information Science
Professional career (4):
  • 博士(情報理工学) (東京大学)
  • 修士(学術) (東京大学)
  • 修士(理学) (東京大学)
  • 学士(理学) (東京大学)
Work history (8):
  • 2020/04 - 現在 立教大学大学院 人工知能科学研究科 教授
  • 2012/04 - 2020/03 Nagasaki University Graduate school of Engineering Associate Professor
  • 2008 - 2012 Nagasaki University Faculty of Engineering
  • 2008 - 2012 Assistant Professor,Electrical and Electronic ,Faculty of Engineering,Nagasaki University
  • 2007 - 2008 Nagasaki University Faculty of Engineering, Department of Computer and Information Sciences
Show all
Awards (5):
  • 2020/02 - 九州半導体・エレクトロニクスイノベーション協議会 令和元年度 第二回「SIIQ技術大賞」 金賞
  • 2018/05 - Science and Engineering Institute Best Oral Presentation Document Modeling with Implicit Approximate Posterior Distributions
  • 2011/06 - INSTICC Best Paper Award DOCUMENTS AS A BAG OF MAXIMAL SUBSTRINGS - An Unsupervised Feature Extraction for Document Clustering
  • 2006 - 情報処理学会論文賞
  • 2003 - DEWS優秀プレゼンテーション賞
Association Membership(s) (2):
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS ,  INFORMATION PROCESSING SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page