Rchr
J-GLOBAL ID:200901061135436825
Update date: Aug. 20, 2024
Saito Sachiko
サイトウ サチコ | Saito Sachiko
Contact this researcher
You can send email directly to the researcher.
Affiliation and department:
Hokkaido University of Education
About Hokkaido University of Education
Search "Hokkaido University of Education"
Detailed information
Job title:
Professor
Research field (1):
Geometry
Research keywords (8):
J_{10}特異点
, Viro's patchworking
, toric modification
, mixed hypersurface singularities
, antisymplectic holomorphic involution
, antiholomorphic involution
, lattice
, K3 surface
Research theme for competitive and other funds (10):
2018 - 2018 K3曲面と格子理論 特別セミナー
2017 - 2018 幾何学的特異点論の展開と応用
2017 - 2017 The 5-th Workshop on K3 surfaces and Enriques surfaces
2016 - 2016 The 4-th Workshop on K3 surfaces and Enriques surfaces
2013 - 2016 Real K3 surfaces with nonsymplectic holomorphic involutions and their degenerations
2010 - 2014 The synthetic study by real algebraic geometry, from sub-Riemannian geometry to tropical geometry
1997 - 1997 実代数多様体の変形と条件付き対合付き格子
1996 - 1996 実多項式で定義される複素曲面とその実部との相対位相型
1994 - 1994 実代数曲線の位相的性質と,対合をもつ格子の不変量との間に対応について
1990 - 1992 実代数多様体の微分位相幾何学的および代数幾何学的研究
Show all
Papers (24):
Sachiko Saito. Toric resolutions of strongly mixed weighted homogeneous polynomial germs of type J_{10}^-. Hokkaido Mathematical Journal (to appear). 2024
Sachiko Saito, Kosei Takashimizu. A note on Newton non-degeneracy of mixed weighted homogeneous polynomials. arXiv:2107.08691. 2022
Sachiko Saito, Kosei Takashimizu. Resolutions of Newton non-degenerate mixed polynomials of strongly polar non-negative mixed weighted homogeneous face type. Kodai Mathematical Journal. 2021. 44. 3. 457-491
Sachiko Saito, Kosei Takashimizu. Newton Non-degeneracy of Mixed Functions. 2021. 72. 1. 1-8
齋藤幸子, 高清水公星. 平面曲線および複素曲面の芽の良い特異点解消. 北海道教育大学紀要(自然科学編). 2021. 71. 2
more...
Books (1):
『代数曲線と特異点』 第II部「実代数幾何学と特異点」---ヒルベルト第16問題とその周辺---
共立出版 2001 ISBN:9784320016736
Lectures and oral presentations (46):
Mixed hypersurface singularities and Hilbert’s 16th problem
(2023)
混合擬斉次多項式のNewton非退化性および強義Newton非退化性
(日本数学会2022年度年会)
Mixed polynomials of strongly polar non-negative mixed weighted homogeneous face type
(2021)
強義混合擬斉次多項式面関数を持つNewton非退化混合多項式の芽のトーリック特異点解消
(日本数学会2021年度年会 2021)
Real DPN pairsのHilbert第16問題とreal 2-elementary K3 surfacesの退化性
(東海大学理学部数学科談話会 2017)
more...
Education (3):
1987 - 1990 Hokkaido University Graduate School, Division of Natural Science Department of Mathematics
1985 - 1987 Nara Women's University Graduate School, Division of Natural Science
1981 - 1985 Nara Women's University Faculty of Science Department of Mathematics
Work history (5):
2024/04 - 現在 Asahikawa Campus, Hokkaido University of Education Professor
2007/04 - 2024/03 Associate Professor
1996/04 - 2007/03 Associate Professor
1991/05 - 1996/03 Lecturer
1990/04 - 1991/04 the Japan Society for the Promotion of Science Special researcher
Committee career (4):
2022/01 - 2023/12 日本数学会 日本数学会出版賞推薦委員会 推薦委員
2013/03 - 2014/02 日本数学会 地方区代議員(北海道支部)
2012/03 - 2014/02 日本数学会「数学通信」編集委員会 常任編集委員
2012/03 - 2013/02 日本数学会 評議員(北海道支部)
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in
researchmap
.
For details, see here
.
Return to Previous Page
TOP
BOTTOM