Rchr
J-GLOBAL ID:200901064113763716   Update date: Oct. 26, 2024

Tanaka Makiko

タナカ マキコ | Tanaka Makiko
Affiliation and department:
Job title: Professor
Homepage URL  (2): https://researchmap.jp/tanaka_makiko?lang=jahttps://www.tus.ac.jp/en/fac/p/index.php?2cad
Research field  (1): Geometry
Research keywords  (1): Differential Geometry
Research theme for competitive and other funds  (17):
  • 2019 - 2023 Study on antipodal sets of symmetric spaces and related geometry
  • 2015 - 2018 Extension and application of antipodal sets in symmetric spaces
  • 2015 - 2018 New Development of Submanifold Geometry and Harmonic Map Theory in Symmetric Spaces
  • 2015 - 2018 Study on geometry of symmetric R-spaces and their submanifolds
  • 2012 - 2015 Study of antipodal sets in symmetric spaces with its extension and application
Show all
Papers (23):
  • Makiko Sumi Tanaka and Hiroyuki Tasaki. Maximal antipodal subgroups and covering homomorphisms with odd degree. International Electronic Journal of Geometry. 2024. 17. 1. 153-156
  • Makiko Sumi Tanaka, Hiroyuki Tasaki and Osami Yasukura. Maximal antipodal sets related to G_2. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. 2022. 150. 10. 4533-4542
  • Makiko Sumi Tanaka and Hiroyuki Tasaki. Polars of disconnected compact Lie groups. Contemporary Mathematics, Differential Geometry and Global Analysis: In Honor of Tadashi Nagano. 2022. 777. 211-225
  • Makiko Sumi Tanaka and Hiroyuki Tasaki. Addendum to: “Maximal antipodal sets of compact classical symmetric spaces and their cardinalities I” [Differ. Geom. Appl. 73 (2020) 101682]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS. 2022. 80. 101815
  • Jost-Hinrich Eschenburg, Peter Quast and Makiko Sumi Tanaka. Addendum to: Maximal tori of extrinsic symmetric spaces and meridians. OSAKA JOURNAL OF MATHEMATICS. 2022. 59. 1. 113-114
more...
MISC (26):
  • 田中 真紀子、田崎 博之. 極大対蹠部分群と奇数次数の被覆準同型写像. 日本数学会2024年度秋季総合分科会 幾何学分科会講演アブストラクト. 2024. 77-78
  • Makiko Sumi Tanaka. Differential Geometry of Riemannian Symmetric Spaces (PART II). Proceedings of the 24th International Workshop on Differential Geometry of Hermitian Symmetric Spaces & Ricci Flow. 2023. 24. 425-437
  • Makiko Sumi Tanaka. Differential Geometry of Riemannian Symmetric Spaces (PART I). Proceedings of the 24th International Workshop on Differential Geometry of Hermitian Symmetric Spaces & Ricci Flow. 2023. 24. 411-423
  • Makiko Sumi Tanaka. Antipodal sets and polars of symmetric spaces. Proceedings of the 24th International Workshop on Differential Geometry of Hermitian Symmetric Spaces & Ricci Flow. 2023. 24. 29-43
  • 田中 真紀子、田崎 博之. 古典型コンパクト対称空間の極大対蹠集合 III. 日本数学会2023年度秋季総合分科会 幾何学分科会講演アブストラクト. 2023. 19-20
more...
Books (4):
  • Contemporary Mathematics, Differential Geometry and Global Analysis: In Honor of Tadashi Nagano
    American Mathematics Society 2022 ISBN:9781470460150
  • Quandles and Symmetric Spaces
    大阪市立大学数学研究所 OCAMI Reports 2022
  • Submanifolds of Symmetric Spaces and Their Time Evolutions
    大阪市立大学数学研究所 OCAMI Reports 2021
  • Differential geometry of curves and surfaces
    Springer 2019 ISBN:9789811517389
Lectures and oral presentations  (70):
  • 極大対蹠部分群と奇数次数の被覆準同型写像
    (日本数学会2024年度秋季総合分科会 2024)
  • 極大対蹠部分群と奇数次数の被覆準同型写像
    (中央大学 幾何・トポロジーセミナー 2024)
  • Antipodal sets of compact symmetric spaces
    (International Conference on Differential Geometry, Integrable Systems and Their Ramifications 2024)
  • コンパクト対称空間の対蹠集合
    (半田山・幾何・代数セミナー 2024)
  • 古典型コンパクト対称空間の極大対蹠集合とその分類
    (部分多様体幾何とリー群作用2023 2023)
more...
Education (1):
  • - 1993 Sophia University Graduate School, Division of Science and Engineering Department of Mathematics
Committee career (4):
  • 2021/04 - 現在 The Mathematical Society of Japan Coordinator of Geometry Section
  • 2011/10 - 現在 The Mathematical Society of Japan Member of Executive Board of Geometry Section
  • 2022/06/01 - 2024/05/31 The Mathematical Society of Japan Director
  • 2022/04 - 2024/03 The Mathematical Society of Japan Councilor (Geometry Section)
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page