1997 - 1998 Noncommutative geometry of quantum complex upper half plane and discrete subgroup of a non-compact quantum group
1996 - 1996 generalized Kac-Moody algebraの表現の研究
1995 - 1995 generalized Kac-Moody algebra の表現論の研究
1994 - 1994 一般化されたKac-Moodyリー環の表現の研究
1994 - 1994 複素解析学と関連分野の研究
1993 - 1993 Kac-Moodyリー環とその表現の研究
Show all
Papers (42):
Satoshi Naito, Daniel Orr, Daisuke Sagaki. Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds. Advances in Mathematics. 2021. 387
S. Naito, D. Sagaki. Level-zero van der Kallen modules and specialization of nonsymmetric Macdonald polynomials at t = infinity. Transform. Groups. 2020
S. Kato, S. Naito, D. Sagaki. Equivariant K-theory of semi-infinite flag manifolds and the Pieri-Chevalley formula. Duke Math. J. 2020. 169. 13. 2421-2500
Saito Yoshihisa, Sagaki Daisuke, Naito Satoshi. ON TENSOR PRODUCTS OF MIRKOVIC-VILONEN POLYTOPES IN TYPE A (Representation Theory and Combinatorics). RIMS Kokyuroku. 2010. 1689. 61-77
NAITO Satoshi, SAGAKI Daisuke. Mirkovic-Vilonen polytopes lying in a Demazure crystal and an opposite Demazure crystal (Expansion of Combinatorial Representation Theory). RIMS Kokyuroku. 2009. 1647. 19-32
SAGAKI Daisuke, NAITO Satoshi. Crystal structure of the set of Lakshmibai-Seshadri paths of an arbitrarylevel-zero shape(The world of Combinatorial Representation Theory). RIMS Kokyuroku. 2006. 1497. 130-139
Sagaki Daisuke, Naito Satoshi. Path Model for a Level-Zero Extremal Weight Module over a Quantum Affine Algebra (Combinatorial Aspect of Integrable Systems). RIMS Kokyuroku. 2005. 1429. 12-24
Description of the Chevalley formula for the torus-equivariant quantum K-group of partial flag manifolds of (co-)minuscule type in terms of the parabolic quantum Bruhat graph
(RIMS Workshop "Representation Theory of Algebraic Groups and Quantum Groups" 2019)
A description of the Z[P]-module structure of the K-theory of the finite-dimensional flag manifold in terms of a generalization of LS paths
(OCAMI Workshop "Crystals and Their Generalizations" 2019)
Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds
(KIAS Workshop "Quantum K-theory and Related Topics" 2018)
Pieri-Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds
(2018)
Pieri-Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds
(Workshop "Geometry and Representation Theory at the Interface of Lie Algebras and Quivers" 2018)