Rchr
J-GLOBAL ID:200901067135034229   Update date: Nov. 19, 2024

Naito Satoshi

ナイトウ サトシ | Naito Satoshi
Affiliation and department:
Job title: Professor
Research field  (1): Algebra
Research keywords  (11): Path Models ,  Crystal Bases ,  Quantum Groups ,  Algebraic Groups ,  Kac-Moody Algebras ,  Representation Theory ,  Kac-Moody リー環 ,  結晶基底 ,  量子群 ,  代数群 ,  表現論
Research theme for competitive and other funds  (28):
  • 2021 - 2026 半無限旗多様体の同変 K-群とアフィン量子群のレベル・ゼロ表現の研究
  • 2016 - 2021 Relation between representations at the critical level and those of level zero for affine Lie algebras and semi-infinite flag manifolds
  • 2012 - 2016 Geometric study of quantum groups and associative algebras
  • 2012 - 2016 Geometric realization of the crystal bases of standard modules over quantum affine algebras
  • 2008 - 2012 Realization of the crystal bases of level-zero representations of quantum affine algebras as algebraic cycles
Show all
Papers (42):
more...
MISC (20):
  • Saito Yoshihisa, Sagaki Daisuke, Naito Satoshi. ON TENSOR PRODUCTS OF MIRKOVIC-VILONEN POLYTOPES IN TYPE A (Representation Theory and Combinatorics). RIMS Kokyuroku. 2010. 1689. 61-77
  • 量子アファイン展開環上の extremal ウエイト加群の結晶基底と Littelmann のパス模型. 岩波書店日本数学会編集雑誌「数学」. 2010. 62. 1. 57-84
  • NAITO Satoshi, SAGAKI Daisuke. Mirkovic-Vilonen polytopes lying in a Demazure crystal and an opposite Demazure crystal (Expansion of Combinatorial Representation Theory). RIMS Kokyuroku. 2009. 1647. 19-32
  • SAGAKI Daisuke, NAITO Satoshi. Crystal structure of the set of Lakshmibai-Seshadri paths of an arbitrarylevel-zero shape(The world of Combinatorial Representation Theory). RIMS Kokyuroku. 2006. 1497. 130-139
  • Sagaki Daisuke, Naito Satoshi. Path Model for a Level-Zero Extremal Weight Module over a Quantum Affine Algebra (Combinatorial Aspect of Integrable Systems). RIMS Kokyuroku. 2005. 1429. 12-24
more...
Lectures and oral presentations  (15):
  • Description of the Chevalley formula for the torus-equivariant quantum K-group of partial flag manifolds of (co-)minuscule type in terms of the parabolic quantum Bruhat graph
    (RIMS Workshop "Representation Theory of Algebraic Groups and Quantum Groups" 2019)
  • A description of the Z[P]-module structure of the K-theory of the finite-dimensional flag manifold in terms of a generalization of LS paths
    (OCAMI Workshop "Crystals and Their Generalizations" 2019)
  • Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds
    (KIAS Workshop "Quantum K-theory and Related Topics" 2018)
  • Pieri-Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds
    (2018)
  • Pieri-Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds
    (Workshop "Geometry and Representation Theory at the Interface of Lie Algebras and Quivers" 2018)
more...
Education (1):
  • 1990 - 1992 Kyoto University
Professional career (1):
  • Doctor(Science) (Kyoto University)
Work history (5):
  • 2016/04 - 現在 Tokyo Institute of Technology School of Science Professor
  • 2011/08 - 2016/03 Tokyo Institute of Technology Graduate School of Science and Engineering Professor
  • 2004/04 - 2011/07 University of Tsukuba Graduate School of Pure and Applied Sciences, Mathematics Associate Professor
  • 1995/10 - 2004/03 University of Tsukuba Institute of Mathematics Associate Professor
  • 1992/10 - 1995/09 Shizuoka University Department of Mathematics, Faculty of Science Research Associate
Committee career (1):
  • 2012/04 - 現在 日本数学会 代数学分科会運営委員
Awards (1):
  • 2018/03 - 日本数学会 2018 年度日本数学会代数学賞 量子アフィン代数の表現論
Association Membership(s) (3):
Mathematical Society of Japan ,  Mathematical Society of Japan ,  日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page