Rchr
J-GLOBAL ID:200901085747184236   Update date: Sep. 02, 2024

KINOSHITA Tamotu

キノシタ タモツ | KINOSHITA Tamotu
Affiliation and department:
Job title: Associate Professor
Research keywords  (5): Wave equation ,  Hyperbolic equation ,  Partial differential equation ,  Fourier analysis ,  Functional analysis
Research theme for competitive and other funds  (3):
  • 2003 - Study on the lifespan for nonlinear hyperbolic equation of higher order
  • 1995 - Study on the Cauchy problem of the wellposedness for weakly hyperbolic equations of higher order
  • ウェーブレットの偏微分方程式への応用
Papers (58):
  • Kinoshita, Tamotu, Hashimoto, Hirofumi. On the Construction of the Orthonormal Wavelet in the Hardy Space H^2(R). International Journal of Wavelets, Multiresolution and Information Processing. 2022. 20. 01
  • Kinoshita, Tamotu, Fujinoki, Kensuke, Hashimoto, Hirofumi. On Directional Frames Having Lipschitz Continuous Fourier Transforms. International Journal of Applied and Computational Mathematics. 2021. 7. 6
  • Fukuda, Naohiro, Kinoshita, Tamotu, Suzuki, Toshio. Haar and Shannon wavelet expansions with explicit coefficients of the Takagi function. Indian Journal of Mathematics. 2020. 62. 1. 21-41
  • Fujii, Katsuya, Kinoshita, Tamotu. On the Double Windowed Ridgelet Transform and its Inverse. Integral Transforms And Special Functions. 2020. 31. 2. 118-132
  • Suzuki, Toshio, Zempo, Keiichi, Kinoshita. Approximation of Distortion Sound via Fourier and Wavelet Transform. Proceedings of the 25th International Congress on Sound and Vibration. 2018
more...
Books (2):
  • PROCEEDINGS OF THE 2013 10TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS
    IEEE COMPUTER SOC 2013 ISBN:9780769549675
  • 微積分学入門-例題を通して学ぶ解析学
    培風館 2008
Lectures and oral presentations  (21):
  • 振動現象を表す微分方程式
    (第13回筑波大学RCMSサロン「波・振動現象の数理」)
  • On an orthonormal basis for L2(R) with derivatives of the normalized sinc function
    (筑波ウェーブレット研究集会)
  • On an orthonormal basis for L2(R) with derivatives of the normalized sinc function
    (偏微分方程式研究集会)
  • ウェーブレットフレーム
    (第8回筑波大学RCMSサロン「ウェーブレットフレームとその応用」 2021)
  • Hardy 空間上のウェーブレットについて
    (時間周波数フレームと画像処理への応用 2020)
more...
Professional career (1):
  • 博士(理学)
Committee career (1):
  • 2016/03 - 2016/03 数学教育学会 顧問
Association Membership(s) (2):
The Japan Society for Industrial and Applied Mathematics ,  日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page