Rchr
J-GLOBAL ID:200901090383529708
Update date: Nov. 15, 2024
Hayasaka Futoshi
ハヤサカ フトシ | Hayasaka Futoshi
Affiliation and department:
Job title:
Professor
Research field (1):
Algebra
Research keywords (6):
graded ring
, multiplicity
, integral closure
, module
, local ring
, Commutative Algebra
Research theme for competitive and other funds (3):
- 2020 - 2023 整閉包の理論の新展開と局所環論への応用
- 2012 - 2015 次数付き環拡大に付随する関数と重複度の研究
- 2010 - 2012 局所環上の巴系加群の重複度の基礎理論構築
Papers (20):
-
Futoshi Hayasaka, Vijay Kodiyalam. Indecomposable integrally closed modules of rank 3 over two-dimensional regular local rings. Journal of Pure and Applied Algebra. 2024. 228. 6. Paper No. 107612, 18 pp.
-
Futoshi Hayasaka, Vijay Kodiyalam. Note on indecomposable integrally closed modules of rank 2 over two-dimensional regular local rings. Journal of Commutative Algebra. 2023. 15. 4. 513-518
-
Futoshi Hayasaka. Indecomposable integrally closed modules of arbitrary rank over a two-dimensional regular local ring. Journal of Pure and Applied Algebra. 2022. 226. 8. Paper No. 107026, 26 pp.
-
Futoshi Hayasaka. Constructing indecomposable integrally closed modules over a two-dimensional regular local ring. Journal of Algebra. 2020. 556. 879-907
-
Futoshi Hayasaka. A formula for the associated Buchsbaum-Rim multiplicities of a direct sum of cyclic modules II. Communications in Algebra. 2019. 47. 8. 3250-3263
more...
MISC (1):
-
Futoshi Hayasaka. Modules of reduction number one. Preprint (math.AC/0612741). 2006
Lectures and oral presentations (39):
-
On ideals of indecomposable integrally closed modules over two-dimensional regular local rings
(2022)
-
2次元正則局所環上の直既約整閉加群について
(特異点セミナー 2022)
-
2次元正則局所環上の階数2の直既約整閉加群
(第33回可換環論セミナー 2022)
-
A note on the Buchsbaum-Rim multiplicity of modules over a two-dimensional regular local ring
(第42回可換環論シンポジウム 2021)
-
単項式イデアルに付随する高階数直既約整閉加群
(可換環論オンラインワークショップ 2020)
more...
Education (1):
- 2000 - 2005 Meiji University Graduate School of Science and Technology
Professional career (1):
Work history (6):
Association Membership(s) (1):
Return to Previous Page