Rchr
J-GLOBAL ID:200901096435553767   Update date: Aug. 05, 2022

Kuwae Kazuhiro

クワエ カズヒロ | Kuwae Kazuhiro
Affiliation and department:
Papers (17):
  • Kazuhiro Kuwae, Xiangdong Li. New Laplacian comparison theorem and its applications to diffusion processes on Riemannian manifolds. Bulletin of London Mathematical Society. 2022. 54. 2. 404-427
  • Kazuhiro Kuwae, Toshiki Shukuri. Laplacian comparison theorem on Riemannian manifolds with modified m-Bakry-Émery Ricci lower bounds for m≤1. Tohoku Mathematical Journal. 2022. 74. 2. 83-107
  • Kazuhiro Kuwae, Yohei Sakurai. Rigidity phenomena on lower N-weighted Ricci curvature bounds with ε-range for nonsymmetric Laplacian. Illinois Journal of Mathematics. 2021. 65. 4. 847-868
  • D. Kim, K. Kuwae. Generalized Schrödinger forms with applications maximum principles. Osaka Journal of Mathematics. 2021. 58. 3
  • Kazuhiro Kuwae. Irreducible decomposition for Markov processes. Stochastic Processes and Their Applications. 2021. 140. 339-356
more...
Books (2):
  • Introduction to Dirichlet forms
    Asakura Publishing Co.,Ltd. 2020
  • Optimal Transport and Ricci Curvature
    Mathematical Society of Japan 2017 ISBN:9784864970440
Lectures and oral presentations  (52):
  • Rigidity phenomena on lower N-weighted Ricci curvature bounds with ε-range for non-symmetric Laplacian
    (Geometry and Probability 2021 2022)
  • Chacón-Ornstein ergodic theorem of pathwise type for Markov processes
    (Markov processes and related topics 2022)
  • Lower weighted Ricci curvature bounds for non-symmetric Laplacian
    (Seminar on mms & convergence 2022)
  • Liouville theorem for V -harmonic maps under non-negative (m, V )-Ricci curvature for non-positive m
    (Probability Workshop 2, Kansai University 2022)
  • Liouville theorem for V -harmonic maps under non-negative (m, V )-Ricci curvature for non-positive m
    (Analysis and Geometry 2021)
more...
Professional career (1):
  • 博士(理学) (大阪大学)
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page