Rchr
J-GLOBAL ID:200901098687956522   Update date: Nov. 25, 2010

MAEJIMA Makoto

マエジマ マコト | MAEJIMA Makoto
Affiliation and department:
Job title: Professor
Research field  (1): General mathematics (including Probability theory/Statistical mathematics)
MISC (98):
Books (1):
  • Selfsimilar Processes
    2002
Lectures and oral presentations  (71):
  • A generalization of Blackwell's theorem for renewal processes to the case of non-identically distributed random variables
    (日本数学会1972年度秋季総合分科会 1972)
  • On a renewal function when some of mean renewal life times are infinite
    (日本数学会1973年度年会 1973)
  • Local limit theoremとBlackwell型のrenewal theoremについて
    (日本数学会1973年度秋季総合分科会 1973)
  • Renewal reward processに関する極限定理について
    (日本数学会1974年度年会 1974)
  • On the integrability of an infinitely divisible characteristic function
    (日本数学会1974年度秋季総合分科会 1974)
more...
Education (3):
  • - 1968 Keio University Faculty of Engineering
  • - 1970 Keio University Graduate School, Division of Engineering
  • - 1973 Keio University Graduate School, Division of Engineering
Committee career (9):
  • 2007/01 - 2009/12 The Bernoulli Society for Mathematical Statistics and Probability Associate editor of the journal "Bernoulli"
  • 2006/06 - 2008/07 7th World Congress of Bernoulli Society Member of Program Committee
  • 2005/08 - 2006/08 The Institute of Mathematical Statistics Member of Committee on Nominations
  • 2005/04 - 2006/08 IMS/Bernoulli "managing committee" for the electronic journals EJP and ECP
  • 2000/06 - 2005/12 The Institute of Mathematical Statistics Associate editor of the journal "The Annals of Probability"
Show all
Association Membership(s) (5):
The Bernoulli Society for Mathematical Statistics and Probability ,  7th World Congress of Bernoulli Society ,  The Institute of Mathematical Statistics ,  IMS/Bernoulli "managing committee" for the electronic journals EJP and ECP ,  The Institute of Mathematical Statistics(米国)
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page