Research keywords (4):
特殊関数論
, 複素変数の微分方程式
, Theory of special functions
, Differential equations of complex variables
Research theme for competitive and other funds (10):
2021 - 2025 平坦構造の一般化と線形微分差分方程式
2017 - 2021 平坦構造の一般化とモノドロミ保存変形
2014 - 2017 Study on free divisors and differential equations
2013 - 2017 線形微分方程式の解の大域挙動とモノドロミ保存変形に関する研究
2009 - 2012 Complementary study on monodromy preserving deformations and new special functions with integral representation
2009 - 2012 線形微分方程式のモノドロミー保存変形と積分表示可能な特殊関数
2009 - 2012 -
2009 - 2011 Asymptotic analysis on the Painleve equations and monodromy problems
2007 - 2009 Study on a new generalization of the hypergeometric integral via modular property
1999 - 2001 保型形式のみたす非線形微分方程式系
Show all
Papers (20):
Mitsuo Kato, Toshiyuki Mano, Jiro Sekiguchi. Flat Structure on the Space of Isomonodromic Deformations. Symmetry, Integrability and Geometry: Methods and Applications. 2020. 16
M. Kato, T. Mano, J. Sekiguchi. Solutions to the extended WDVV equations and the Painleve VI equation. "Complex Differential and Difference Equations" in the series De Gruyter Proceedings in Mathematics. 2019. 343-363
Mano Toshiyuki. Potential vector fields and isomonodromic tau functions in terms of flat coordinates. "Complex Differential and Difference Equations" in the series De Gruyter Proceedings in Mathematics. 2019. 327-342
T. Hoge, T. Mano, G. Rohrle, C. Stump. Freeness of multi-reflection arrangements via primitive vector fields. Advances in Mathematics. 2019. 350. 63-96
Introduction to flat structure with applications to complex reflection groups and Painlevé equations
2022 ISBN:9784627083813
Lectures and oral presentations (67):
パンルヴェ(超越)関数とポテンシャルベクトル場
(パンルヴェ方程式の幾何学とその周辺 2024)
On a geometric notion associated with linear differential equations of Okubo normal form
(Complex Differential and Difference Equations II 2023)
Flat structures on solutions to the sixth Painleve equation
(Web-seminar on Painleve Equations and related topics 2023)
Period of primitive forms, the space of Okubo-Saito potentials and the sixth Painleve equation
(Painleve Equations: From Classical to Modern Analysis 2022)