Rchr
J-GLOBAL ID:201001018445141564   Update date: Aug. 01, 2024

Toshiyuki Mano

マノ トシユキ | Toshiyuki Mano
Affiliation and department:
Job title: Associate Professor
Research field  (1): Mathematical analysis
Research keywords  (4): 特殊関数論 ,  複素変数の微分方程式 ,  Theory of special functions ,  Differential equations of complex variables
Research theme for competitive and other funds  (10):
  • 2021 - 2025 平坦構造の一般化と線形微分差分方程式
  • 2017 - 2021 平坦構造の一般化とモノドロミ保存変形
  • 2014 - 2017 Study on free divisors and differential equations
  • 2013 - 2017 線形微分方程式の解の大域挙動とモノドロミ保存変形に関する研究
  • 2009 - 2012 Complementary study on monodromy preserving deformations and new special functions with integral representation
Show all
Papers (20):
  • Mitsuo Kato, Toshiyuki Mano, Jiro Sekiguchi. Flat Structure on the Space of Isomonodromic Deformations. Symmetry, Integrability and Geometry: Methods and Applications. 2020. 16
  • M. Kato, T. Mano, J. Sekiguchi. Solutions to the extended WDVV equations and the Painleve VI equation. "Complex Differential and Difference Equations" in the series De Gruyter Proceedings in Mathematics. 2019. 343-363
  • Mano Toshiyuki. Potential vector fields and isomonodromic tau functions in terms of flat coordinates. "Complex Differential and Difference Equations" in the series De Gruyter Proceedings in Mathematics. 2019. 327-342
  • H. Kawakami, T. Mano. Regular flat structure and generalized Okubo system. Communications in Mathematical Physics. 2019. 369. 2. 403-431
  • T. Hoge, T. Mano, G. Rohrle, C. Stump. Freeness of multi-reflection arrangements via primitive vector fields. Advances in Mathematics. 2019. 350. 63-96
more...
MISC (2):
  • 川上拓志, 眞野智行. 正則平坦構造と一般大久保型方程式. 数理解析研究所講究録. 2018. 2071. 94-115
  • 眞野 智行. レベル3のWirtinger積分から得られるフックス型方程式について. 数理解析研究所講究録. 2009. 1662. 176-194
Books (1):
  • Introduction to flat structure with applications to complex reflection groups and Painlevé equations
    2022 ISBN:9784627083813
Lectures and oral presentations  (67):
  • パンルヴェ(超越)関数とポテンシャルベクトル場
    (パンルヴェ方程式の幾何学とその周辺 2024)
  • On a geometric notion associated with linear differential equations of Okubo normal form
    (Complex Differential and Difference Equations II 2023)
  • Flat structures on solutions to the sixth Painleve equation
    (Web-seminar on Painleve Equations and related topics 2023)
  • Period of primitive forms, the space of Okubo-Saito potentials and the sixth Painleve equation
    (Painleve Equations: From Classical to Modern Analysis 2022)
  • 複素鏡映群の平坦不変式と多重鏡映面配置の自由性
    (日本数学会九州支部例会 2020)
more...
Professional career (1):
  • - (Kyoto University)
Work history (4):
  • 2020/12 - 現在 University of the Ryukyus Faculty of Science Department of Mathematical Sciences
  • 2012/08 - 2020/11 University of the Ryukyus Faculty of Science
  • 2009/11/01 - - , 琉球大学 理学部 助教
  • 2009/11/01 - - , University of the Ryukyus, Faculty of Science, Research Associate
Awards (1):
  • 2023/12 - 日本数学会函数方程式論分科会 第十五回福原賞 大久保型方程式と平坦構造の一般化に関する発見を含む複素領域における函数方程式の研究
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page