Rchr
J-GLOBAL ID:201301031430698749   Update date: Feb. 01, 2024

Kanako Oshiro

オオシロ カナコ | Kanako Oshiro
Affiliation and department:
Job title: Associate Professor
Homepage URL  (1): http://pweb.sophia.ac.jp/oshirok/
Research field  (1): Geometry
Research keywords  (1): Knot, Link, Surface-knot, Surface-link, Spatial graph, Handlebody-knot, Quandle algebra
Research theme for competitive and other funds  (8):
  • 2021 - 2025 絡み目に関わる代数系の整理と絡み目不変量の再定式化
  • 2019 - 2024 Research on 4-dimensional topology from the viewpoint of graphics and quandle theory
  • 2016 - 2020 カンドル代数を用いた結び目不変量の再定式化と一般化および応用
  • 2014 - 2019 Research on 4-dimensional topology from the viewpoint of graphics and quandle theory
  • 2013 - 2016 カンドル理論と曲面絡み目への応用について
Show all
Papers (37):
  • Eri Matsudo, Kanako Oshiro, Gaishi Yamagishi. The minimum numbers of Dehn colors and local biquandle cocycle invariants. 2023. 1. 4-9
  • Eri Matsudo, Kanako Oshiro, Gaishi Yamagishi. Minimum numbers of Dehn colors and R-palette graphs. 2023. 1-3
  • Atsushi Ishii, Kanako Oshiro. Quandle twisted Alexander invariants. Osaka J. Math. 2022. 59
  • Atsushi Ishii, Kanako Oshiro. Derivatives with Alexander pairs for quandles. Fund. Math. 2022. 1. 1-31
  • Kanako Oshiro, Natsumi Oyamaguchi. Dehn colorings and vertex-weight invariants for spatial graphs. Topology Appl. 2022. 307. 107766, 13pp
more...
Books (1):
  • Encyclopedia of Knot Theory, Kei and Symmetric Quandles
    2021
Lectures and oral presentations  (48):
  • The minimum numbers of Dehn colors and local biquandle cocycle invariants
    (2022)
  • Normalized quandle twisted Alexander invariants
    (2022)
  • Vertex conditions for colorings of spatial graphs
    (研究集会「Japanese Conference on Combinatorics and its Application 2022 離散数学とその応用研究集会 2022」(JCCA2022) 2022)
  • Alexander pairs of quandles and generalizations of twisted Alexander polynomials
    (The 17th East Asian Conference on Geometric Topology 2022)
  • The minimum number of Dehn colors of knots and R-palette graphs
    (The 17th East Asian Conference on Geometric Topology 2022)
more...
Professional career (3):
  • 学士(理学) (広島大学)
  • 修士(理学) (広島大学)
  • 博士(理学) (広島大学)
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page