Rchr
J-GLOBAL ID:201401030374680921   Update date: Jul. 17, 2024

Ohta Shin-ichi

オオタ シンイチ | Ohta Shin-ichi
Affiliation and department:
Job title: Professor
Other affiliations (1):
  • RIKEN Center for Advanced Intelligence Project  Mathematical Science Team   Visiting Researcher
Homepage URL  (1): http://www4.math.sci.osaka-u.ac.jp/~sohta/
Research field  (1): Geometry
Research theme for competitive and other funds  (18):
  • 2024 - 2029 New developments in gradient flow theory on metric spaces
  • 2024 - 2027 最適輸送理論の深化-数理情報の融合研究-
  • 2022 - 2027 Analysis on metric measure spaces by optimal transport theory and Markov processes
  • 2019 - 2024 Geometry of optimal transport theory and gradient flows
  • 2017 - 2022 Geometry and analysis on metric measure spaces based on the theory of Markov processes and optimal mass transport
Show all
Papers (47):
  • Shin-ichi Ohta. Barycenters and a law of large numbers in Gromov hyperbolic spaces. Revista Matemática Iberoamericana. 2024. 40. 3. 1185-1206
  • Mathias Braun, Shin-ichi Ohta. Optimal transport and timelike lower Ricci curvature bounds on Finsler spacetimes. Transactions of the American Mathematical Society. 2024. 377. 3529-3576
  • Yufeng Lu, Ettore Minguzzi, Shin-ichi Ohta. Geometry of weighted Lorentz-Finsler manifolds II: A splitting theorem. International Journal of Mathematics. 2023. 34. 01
  • Cong Hung Mai, Shin-ichi Ohta. Quantitative estimates for the Bakry-Ledoux isoperimetric inequality II. Bulletin of the London Mathematical Society. 2023. 55. 1. 224-233
  • Yufeng Lu, Ettore Minguzzi, Shin-ichi Ohta. Comparison theorems on weighted Finsler manifolds and spacetimes with ε-range. Analysis and Geometry in Metric Spaces. 2022. 10. 1. 1-30
more...
MISC (6):
  • Shin-ichi Ohta. Nonlinear geometric analysis on Finsler manifolds. European Journal of Mathematics. 2017. 3. 4. 916-952
  • Shin-Ichi Ohta. Ricci curvature, entropy, and optimal transport. London Mathematical Society Lecture Note Series. 2014. 413. 145-199
  • Ohta Shin-ichi. Curvature-dimension condition and heat flow on metric measure spaces (Progress in Variational Problems : Variational Problems Interacting with Probability Theories). RIMS Kokyuroku. 2013. 1837. 44-51
  • Ohta Shin-ichi. Geometric analysis on Finsler manifolds. SUGAKU. 2012. 64. 4. 337-356
  • Ohta Shin-ichi. On the geometry of the space of probability measures. Tokyo Sugaku Kaisya Zasshi. 2011. 63. 1. 21-42
more...
Books (2):
  • Comparison Finsler Geometry
    Springer 2021 ISBN:9783030806491
  • 最適輸送理論とリッチ曲率(数学メモアール第8巻)
    日本数学会 2017
Education (2):
  • 2001 - 2003 Tohoku University Graduate School of Science Doctor Course
  • 1999 - 2001 Tohoku University Graduate School of Science Master Course
Professional career (2):
  • Doctor of Science (Tohoku University)
  • Master of Science (Tohoku University)
Work history (5):
  • 2022/04 - 現在 RIKEN Center for Advanced Intelligence Project Mathematical Science Team Visiting Researcher
  • 2017/04 - 現在 Osaka University Department of Mathematics, Graduate School of Science Professor
  • 2017/10 - 2022/03 RIKEN Center for Advanced Intelligence Project Mathematical Analysis Team Team Leader
  • 2009/10 - 2017/03 Kyoto University Department of Mathematics, Graduate School of Science Associate Professor
  • 2003/10 - 2009/09 Kyoto University Department of Mathematics, Graduate School of Science Assistant Professor
Awards (5):
  • 2014/02 - Japan Society for the Promotion of Science JSPS Prize Geometric analysis on metric measure spaces
  • 2012/04 - MEXT, Japan Young Scientists' Prize Geometric analysis on metric spaces
  • 2012/03 - The Mathematical Society of Japan Spring Prize Geometric analysis on metric measure spaces and Finsler manifolds
  • 2011/09 - The Mathematical Society of Japan Geometry Prize Geometric analysis on Finsler manifolds
  • 2005/09 - The Mathematical Society of Japan Takebe Prize Geometry and analysis on metric spaces
Association Membership(s) (1):
The Mathematical Society of Japan
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page