Rchr
J-GLOBAL ID:201401076852309231   Update date: Nov. 15, 2024

Sakai Mikio

サカイ ミキオ | Sakai Mikio
Affiliation and department:
Job title: Full Professor
Homepage URL  (1): https://dem.t.u-tokyo.ac.jp/index.html
Research field  (5): Fluid engineering ,  Chemical reaction and process system engineering ,  Computational science ,  Transfer phenomena and unit operations ,  Nuclear engineering
Research keywords  (22): Simulation-based digital twin ,  Cyber Physical System ,  digital twin ,  Continuous Manufacturing of Pharmaceuticals ,  Phase change ,  Multi-physics ,  Discrete Element Method ,  Computational Mechanics ,  粉体 ,  Powder Technology ,  Particle Technology ,  Computational Granular Dynamics ,  製剤 ,  液架橋力 ,  自由表面流 ,  表面張力 ,  個別要素法 ,  数値流体力学 ,  粉体工学 ,  混相流 ,  Dscrete Element Method ,  粒子法
Research theme for competitive and other funds  (7):
  • 2024 - 2027 Development of fundamental technologies towards realization of digital twin in large-scale gas-solid-liquid three-phase flow systems
  • 2021 - 2025 Development of innovative simulation technology for the realization of continuous production of pharmaceuticals
  • 2021 - 2024 New frontiers in discontinuum mechanics model: coarse-grained DEM for powder systems
  • 2017 - 2020 Development of an innovative powder molding simulator for high-precision die design
  • 2018 - 2020 Demonstration of powder compaction simulation technology for high-precision mold design
Show all
Papers (72):
  • Shuo Li, Mikio Sakai. Advanced graph neural network-based surrogate model for granular flows in arbitrarily shaped domains. Chemical Engineering Journal. 2024. 500. 157349
  • Yuki Tsunazawa, Nobukazu Soma, Motoyuki Iijima, Junich Tatami, Takamasa Mori, Mikio Sakai. Validation study on a coarse-grained DEM-CFD simulation in a bead mill. Powder Technology. 2024. 440. 119743
  • Shuo LI, GuangTao Duan, Mikio Sakai. On reduced-order modeling of gas-solid flows using deep learning. Physics of Fluids. 2024. 36. 033340
  • Guangtao Duan, Shuo Li, Mikio Sakai. Feasibility Analysis of a POD-Based Reduced Order Model with Application in Eulerian-Lagrangian Simulations. Ind. Eng. Chem. Res. 2024. 63. 1. 780-796
  • Kai-en Yang, Shuo Li, Guangtao Duan, Mikio Sakai. On Fostering Predictions in Data-Driven Reduced Order Model for Eulerian-Lagrangian Simulations: Decision of Sufficient Training Data. Journal of Chemical Engineering of Japan. 2024. 57. 1. 2316155
more...
MISC (2):
  • Existing Numerical Simulation Technologies for Powder Processes and their Evolution. 2014. 78. 3. 186-189
  • 越塚誠一, 酒井幹夫, 柴田和也. 最新の粒子法シミュレーションに関する研究紹介. 応用数理. 2010. 20. 3. 257-259
Books (2):
  • 混相流の数値シミュレーション
    丸善出版 2015
  • Numerical simulation of granular flows
    2012
Lectures and oral presentations  (77):
  • Advancements in the discrete element method: paving the way for the future of manufacturing
    (4th International Workshops on Advances in Computational Mechanics 2024)
  • Recent Breakthroughs in the Discrete Element Method for Industrial Applications
    (Advances in Particle Technology Workshop 2024 2024)
  • Development of core technologies for a simulation-based digital twin for continuous manufacturing
    (Japan Society of Pharmaceutical Machinery and Engineering 2024)
  • Development and industrial application of the advanced discrete element method
    (16th World Congress on Computational Mechanics 2024)
  • Advancing Discrete Element Method Simulation: A Comprehensive Verification and Validation Study
    (International Powder and Nanotechnology Forum 2024 2024)
more...
Work history (4):
  • 2023 - 現在 Imperial College London Visiting Professor
  • 2023 - 現在 The University of Tokyo The Graduate School of Engineering
  • 2019 - 現在 University of Surrey Visiting Professor
  • 2016 - 2023 Imperial College London Visiting Reader
Committee career (12):
  • 2024/04 - 現在 Computational Science and Engineering Division, Atomic Energy Society of Japan Chairman
  • 2024 - 現在 Powder Technology Editorial Board Member
  • 2023 - 現在 Chemical Engineering Science Editor
  • 2021/04 - 現在 Association of Powder Process Industry and Engineering Chairperson for AI Technical Committee
  • 2018 - 現在 Granular Matter Editor
Show all
Awards (10):
  • 2023 - Japan Association for Computational Mechanics The JACM Computational Mechanics Award
  • 2023 - The Society of Chemical Engineers, Japan. The SCEJ Award for Outstanding Research Achievement
  • 2022 - Computational Science and Engineering Division, AESJ Outstanding Achievement Award
  • 2019 - SPTJ Technical Award
  • 2019 - The Information Center of Particle Technology IP Award
Show all
Association Membership(s) (8):
日本粉体工業技術協会 ,  AIChE ,  THE JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE ,  ATOMIC ENERGY SOCIETY OF JAPAN ,  THE JAPAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS ,  THE JAPANESE SOCIETY FOR MULTIPHASE FLOW ,  THE SOCIETY OF POWDER TECHNOLOGY, JAPAN ,  THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page