Rchr
J-GLOBAL ID:201401076852309231
Update date: Nov. 15, 2024
Sakai Mikio
サカイ ミキオ | Sakai Mikio
Affiliation and department:
Job title:
Full Professor
Homepage URL (1):
https://dem.t.u-tokyo.ac.jp/index.html
Research field (5):
Fluid engineering
, Chemical reaction and process system engineering
, Computational science
, Transfer phenomena and unit operations
, Nuclear engineering
Research keywords (22):
Simulation-based digital twin
, Cyber Physical System
, digital twin
, Continuous Manufacturing of Pharmaceuticals
, Phase change
, Multi-physics
, Discrete Element Method
, Computational Mechanics
, 粉体
, Powder Technology
, Particle Technology
, Computational Granular Dynamics
, 製剤
, 液架橋力
, 自由表面流
, 表面張力
, 個別要素法
, 数値流体力学
, 粉体工学
, 混相流
, Dscrete Element Method
, 粒子法
Research theme for competitive and other funds (7):
- 2024 - 2027 Development of fundamental technologies towards realization of digital twin in large-scale gas-solid-liquid three-phase flow systems
- 2021 - 2025 Development of innovative simulation technology for the realization of continuous production of pharmaceuticals
- 2021 - 2024 New frontiers in discontinuum mechanics model: coarse-grained DEM for powder systems
- 2017 - 2020 Development of an innovative powder molding simulator for high-precision die design
- 2018 - 2020 Demonstration of powder compaction simulation technology for high-precision mold design
- 2013 - 2014 Rheological evaluation of highly viscous slurry by using a numerical computation
- 2010 - 2011 Development of a large-scale model for computational granular dynamics
Show all
Papers (72):
-
Shuo Li, Mikio Sakai. Advanced graph neural network-based surrogate model for granular flows in arbitrarily shaped domains. Chemical Engineering Journal. 2024. 500. 157349
-
Yuki Tsunazawa, Nobukazu Soma, Motoyuki Iijima, Junich Tatami, Takamasa Mori, Mikio Sakai. Validation study on a coarse-grained DEM-CFD simulation in a bead mill. Powder Technology. 2024. 440. 119743
-
Shuo LI, GuangTao Duan, Mikio Sakai. On reduced-order modeling of gas-solid flows using deep learning. Physics of Fluids. 2024. 36. 033340
-
Guangtao Duan, Shuo Li, Mikio Sakai. Feasibility Analysis of a POD-Based Reduced Order Model with Application in Eulerian-Lagrangian Simulations. Ind. Eng. Chem. Res. 2024. 63. 1. 780-796
-
Kai-en Yang, Shuo Li, Guangtao Duan, Mikio Sakai. On Fostering Predictions in Data-Driven Reduced Order Model for Eulerian-Lagrangian Simulations: Decision of Sufficient Training Data. Journal of Chemical Engineering of Japan. 2024. 57. 1. 2316155
more...
MISC (2):
-
Existing Numerical Simulation Technologies for Powder Processes and their Evolution. 2014. 78. 3. 186-189
-
越塚誠一, 酒井幹夫, 柴田和也. 最新の粒子法シミュレーションに関する研究紹介. 応用数理. 2010. 20. 3. 257-259
Books (2):
-
混相流の数値シミュレーション
丸善出版 2015
-
Numerical simulation of granular flows
2012
Lectures and oral presentations (77):
-
Advancements in the discrete element method: paving the way for the future of manufacturing
(4th International Workshops on Advances in Computational Mechanics 2024)
-
Recent Breakthroughs in the Discrete Element Method for Industrial Applications
(Advances in Particle Technology Workshop 2024 2024)
-
Development of core technologies for a simulation-based digital twin for continuous manufacturing
(Japan Society of Pharmaceutical Machinery and Engineering 2024)
-
Development and industrial application of the advanced discrete element method
(16th World Congress on Computational Mechanics 2024)
-
Advancing Discrete Element Method Simulation: A Comprehensive Verification and Validation Study
(International Powder and Nanotechnology Forum 2024 2024)
more...
Work history (4):
- 2023 - 現在 Imperial College London Visiting Professor
- 2023 - 現在 The University of Tokyo The Graduate School of Engineering
- 2019 - 現在 University of Surrey Visiting Professor
- 2016 - 2023 Imperial College London Visiting Reader
Committee career (12):
- 2024/04 - 現在 Computational Science and Engineering Division, Atomic Energy Society of Japan Chairman
- 2024 - 現在 Powder Technology Editorial Board Member
- 2023 - 現在 Chemical Engineering Science Editor
- 2021/04 - 現在 Association of Powder Process Industry and Engineering Chairperson for AI Technical Committee
- 2018 - 現在 Granular Matter Editor
- 2017 - 現在 日本粉体工業技術協会 粉体シミュレーション技術利用分科会 コーディネータ
- 2016 - 現在 粉体工学会 理事
- 2025 - 2025 10th International Conference on Discrete Element Methods (DEM10) Chairman
- 2022 - 2025 Atomic Energy Society of Japan Program Organization Working Group
- 2019 - 2022 Powder Technology Guest Editor
- 2016 - 2022 Chemical Engineering Science Associate Editor
- 2013 - 2016 日本応用数理学会 論文誌 編集委員
Show all
Awards (10):
- 2023 - Japan Association for Computational Mechanics The JACM Computational Mechanics Award
- 2023 - The Society of Chemical Engineers, Japan. The SCEJ Award for Outstanding Research Achievement
- 2022 - Computational Science and Engineering Division, AESJ Outstanding Achievement Award
- 2019 - SPTJ Technical Award
- 2019 - The Information Center of Particle Technology IP Award
- 2017 - 粉体工学会 技術賞
- 2016 - 日本計算力学連合 The JACM Fellows Award
- 2014 - 化学工学会 粒子・流体プロセス部会 フロンティア賞
- 2011 - The Society of Powder Technology, JAPAN Best Papaer Award
- 2008 - APPIE Research Encouragement Award
Show all
Association Membership(s) (8):
日本粉体工業技術協会
, AIChE
, THE JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE
, ATOMIC ENERGY SOCIETY OF JAPAN
, THE JAPAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS
, THE JAPANESE SOCIETY FOR MULTIPHASE FLOW
, THE SOCIETY OF POWDER TECHNOLOGY, JAPAN
, THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN
Return to Previous Page